

1303 South 8th Street P.O. Box 1090 Manitowoc, WI 54221-1090 920-683-4600 FAX 920-686-4348 www.mpu.org

Mr. Randy Matty, P.E. Air Management Engineer Wisconsin Department of Natural Resources 2984 Shawano Ave. Green Bay, WI 54313-6727 August 15, 2014

RE: Boiler B28 and B09 Stack Test Reports, Report No. 4784A

Dear Mr. Matty:

Enclosed are two copies of the stack test report required by Permit No.: 436035930-P22 condition ZZZ.4.(2). The report details the Total Particulate Compliance Tests performed on Manitowoc Public Utilities (MPU) Boiler No. 8 (B28) on June 19, 2014 and on Boiler No. 9 (B09) on June 17, 2014 in Manitowoc, WI. Airtech Environmental Services Inc. performed the compliance tests and the results are documented in the attached Airtech Environmental Services Inc. Report No. 4784A, dated August 14, 2014. The reported results purport to be elevated when compared to the total PM limit. As explained below, MPU and Airtech Environmental Services both believe these results are invalid. Therefore, we do not believe these results show an exceedance.

The summary of the test results are as follows:

Boiler	Constituent	Average Emission Rate lb/mmBtu	Permit Limit lb/mmBtu
B-28	<pm<sub>2.5 filterable fraction</pm<sub>	0.000967	
B-28	>PM _{2.5} fraction	0.00868	
B-28	Condensable fraction	0.165	
B-28	Total PM _{2.5}	0.166	
B-28	Total PM	0.175	0.03

File: PowerPlant/Regulatory - Environmental/Correspondence/WDNR Document: 2014-08-15 (WDNR) B8 and B9 Stack Test Report Cover Letter

Boiler	Constituent	Average Emission Rate Lb/mmBtu	Permit Limit Lb/mmBtu
B-09	<pm<sub>2.5 filterable fraction</pm<sub>	0.00160	
B-09	>PM _{2.5} fraction	0.00877	
B-09	Condensable fraction	0.0596	
B-09	Total PM _{2.5}	0.0612	
B-09	Total PM	0.0699	0.03

B28 Compliance Status:

 Total particulate test results exceeded the applicable permit limitation of Permit No.: 436035930-P22 condition I.E.1.a.(1). Total filterable particulate matter was 0.009647 Lb/mmBtu and is well below the 0.03 Lb/mmBtu limit indicating that the baghouse is performing well.

B09 Compliance Status:

 Total particulate test results exceeded the applicable permit limitation of Permit No.: 436035930-P22 condition I.D.1.a.(1). Total filterable particulate matter was 0.01037 Lb/mmBtu and is well below the 0.03 Lb/mmBtu limit indicating that the baghouse is performing well.

Discussion:

- Airtech Environmental Services Inc. reported that they used aluminum trays to dry the
 condensable samples and the trays were visibly corroded. We believe this accounts for the
 elevated results observed in the condensable fraction as non-PM material was captured on
 the tare tray.
- The variation between the runs was also significant with B-28 having a standard deviation of 0.08 Lb/mmBtu and B-09 having a standard deviation of 0.034 Lb/mmBtu
- MPU has tested both of these boilers several times and has never experienced condensable results of this magnitude, see historical test summary table below.

Unit	Test Date	Filterable PM Lb/mmBtu	Condensable PM Lb/mmBtu	Total PM Lb/mmBtu
B-28	8-8-2012	0.00458	0.00935	0.01394
B-28	4-19-2012	0.013	0.012	0.025
B-09	4-17-2012	0.009	0.008	0.017
B-28	1-12-2010	0.013	0.01	0.023
B-09	1-13-2010	0.009	0.007	0.016
B-28	9-19-2007	0.0109	0.0091	0.0201

• Note that the above historical data indicates filterable and condensable emission rates are normally about the same on both units. Test results on both units are not reasonable.

File: PowerPlant/Regulatory - Environmental/Correspondence/WDNR Document: 2014-08-15 (WDNR) B8 and B9 Stack Test Report Cover Letter

Recommendation:

- MPU believes that the neither test is representative of the actual total particulate matter emission rates and both tests should be considered void.
- Airtech Environmental Services Inc. agrees that this testing should be considered invalid for the purposes of proving compliance with the total PM emission limit.
- MPU will repeat testing of boilers B28 and B09 using Method 201 and 202 trains and specify that glass be used as the tare "tin" to complete the condensable analysis. The testing to be completed per the test protocol previously submitted.
- Alternately MPU will repeat testing of boilers B28 and B09 using conventional Method 5 and 202 trains as allowed in the permit to demonstrate compliance with the total particulate emission limit. Alternate test protocol for this method is attached.
- MPU is prepared to retest the units as soon as possible if the Department waives the 20-day notification requirement and indicates which method we should use.

If you have any questions regarding the stack test report, or require additional information, please contact me.

Sincerely,

Thomas E. Reed, P.E.

Environmental Engineer Manitowoc Public Utilities

Phone: 920-686-4384 Cell: 920-973-7134 Fax: 920-686-4348 Cc: Nilaksh Kothari – MPU

Red Jones – MPU

Jerry Ahlswede – MPU

Brian Fassbender – MPU

Tim Harding - MPU

Scott Karbon - MPU

Source: Y:\Group File Folders\Reed\1-Tom Reed\Air\stack testing\2014 B28 & B09 Test\WDNR stack test report cover letter-voided PM test-final.docx

Report on the Air Emissions Test Program

Conducted for Manitowoc Public Utilities At the Manitowoc Public Utilities Power Plant Located in Manitowoc, Wisconsin

> Report No. 4784A August 14, 2014

Table of Contents

PROJECT OVERVIEW	2
General	
Methodology	
Parameters	
Results	
SUMMARY OF RESULTS	5
Table 1 – Summary of Boiler B28 Results	4
Table 2 – Summary of Boiler B09 Results	
TEST PROCEDURES	
Method Listing	
Method Descriptions	
Method 1	
Method 2	
Method 3	
Method 4	8
Method 19	9
Method 201A/ 202	
DESCRIPTION OF INSTALLATION	12

APPENDIX

Figures
Sample Calculations
Parameters
Field Data Printouts
Field Data
Laboratory Data
Calibration Data
Process Data

Project Overview

General

Airtech Environmental Services, Inc. (Airtech) was contracted by Manitowoc Public Utilities (MPU) to perform an air emissions test program at their facility located in Manitowoc, Wisconsin. The specific objective of this test program was to determine the emissions of filterable particulate matter (PM) equal to or less than a nominal aerodynamic diameter of 2.5 micrometers (PM $_{2.5}$) and total particulate matter (TPM) from the exhausts of two (2), circulating, fluidized-bed boilers designated as Boiler 8 (B28) and Boiler 9 (B09).

Testing was performed to meet the requirements of MPU, the Wisconsin Department of Natural Resources (WDNR), and the US Environmental Protection Agency (USEPA).

Testing on Boiler 8 was performed on June 19, 2014. Testing on Boiler 9 was performed on June 17, 2014. Coordinating the field portion of the test program were:

Thomas Reed – Manitowoc Public Utilities Blu Kaput – Airtech Environmental Services Inc.

Methodology

EPA Methods 201A and 202 were used to determine the emissions of PM equal to or less than a nominal aerodynamic diameter of 2.5 micrometer ($PM_{2.5}$) and the concentration of total particulate at each test location. With this approach, a sample of the gas stream was withdrawn isokinetically from the source. The filterable PM was separated by an instack, stainless steel cyclone. Particles greater than 2.5 micron diameter were caught in the cyclone. PM less than or equal to 2.5 micron diameter passed through the cyclone assembly and were caught on an in-stack glass fiber filter. Condensible PM in the sample gas passed through the filter and collected in a dry impinger system. The weight of filterable $PM_{2.5}$ and condensable PM collected with the sample train combined with the volume of dry gas withdrawn from the source was then used to calculate the various PM concentrations.

The compliance PM testing of Boilers 28 and 09 was modified per guidance obtained from Andy Seeber (Wisconsin DNR) on July 3, 2012 as follows:

- 1. The configuration for the particulate train to determine both PM2.5 emissions and total particulate emissions was as follows:
 - PM_{2.5} nozzle
 - PM_{2.5} sampling head
 - PM_{2.5} filter
 - Glass lined probe (heated to 248F +/- 25F)
 - Filter bypass (heated to 248F +/- 25F)
 - Impinger train setup per USEPA Method 202 requirements

- 2. Sampling was performed at the Method 1 required test points (normally 25 for B28) with a minimum of 60 dry standard cubic feet sampled, and an isokinetic variance of between 90%-110%.
- 3. Less than PM_{2.5} emissions consisted of the total of the less than PM_{2.5} filterable fraction plus the condensable (Method 202) fraction.
- 4. Total particulate emissions consisted of the less than $PM_{2.5}$ filterable fraction, plus the greater than $PM_{2.5}$ filterable fraction, plus condensable (Method 202) fraction.

In order to convert the various PM fractions to mass emissions rates, the volumetric gas flow rate through each test location was determined concurrently with each test run, using EPA Methods 1, 2, 3 and 4. Three test runs were performed at each test location. Each test run was 180 minutes in duration. Total PM, PM_{2.5}, and condensable PM is reported in units of pounds per hour (lb/hr), pounds per million British thermal unit of heat input, f-Factor method (lb/mmBtu) and lbs. per ton of fuel input (lb/ton).

Parameters

The following specific parameters were determined at each test location:

- gas temperature
- · gas velocity
- carbon dioxide content
- oxygen content
- moisture content
- particulate matter less than a nominal aerodynamic diameter of 2.5 microns
- condensable particulate matter
- total particulate matter

Results

The results from this testing have been biased by a reactive deposition. Though the procedures in Method 202 were followed precisely, an obvious reaction between the final inorganic fraction condensate and the weighing tin required by Method 202 occurred. The bias was caused by chemicals reacting with the aluminum in the weighing tin. This resulted in a white precipitate forming at the bottom of the tin. The reaction was in fact so significant that it weakened the aluminum at the bottom of each weighing tin to the point that the structure of the tins was compromised.

For the reasons cited above, this testing and the associated condensable results should be considered invalid for the purposes of proving compliance with the total PM emission limit. It is the opinion of Airtech Environmental Services that any condensable PM determinations made at these particular sources be done using only glass components, including the vessels used for analysis.

A summary of test results is presented in Tables 1 and 2 on Pages 5 and 6.

Proximate and ultimate fuel analysis was conducted on all fuels used during the test program. An F_c factor was calculated based on the mass percentage of each fuel in the final fuel feed. The F_c factor used in the final emission calculation was 1,528 scf/mmBtu for Boiler B28 and 1,489 scf/mmBtu for Boiler B09. The results of the fuel analysis can be found in the Laboratory Data section of the Appendix. A summary of the resulting F_c factor can be found in the Parameters section of the Appendix.

Pounds per ton of fuel input emission rates are calculated using the fuel throughput provided in the Boiler Operating data and the measured pound per hour emission rates measured at the stack. All pertinent boiler operating parameters can be found in the Process Data section of the Appendix.

Submitted by:	Reviewed by:
Catay Busce	Alluhuel Cess
Cathy Busse, Technical Writer	Michael Hess, CEMS Manager

Summary of Results

Table 1–Summary of Boiler B28 Results

Test Parameters Date Start Time Stop Time	Run 1 6/19/2014 8:14 11:16	Run 2 6/19/2014 11:59 15:01	Run 3 6/19/2014 15:32 18:34	Average
Process Data Fuel Input (lb/run) Fuel Input (lb/hr) Production Rate (MWh/hr)	68,972 22,491 22.11	72,642 22,467 22.18	68,135 22,586 22.71	
Gas Conditions Temperature (°F) Volumetric Flow Rate (acfm) Volumetric Flow Rate (scfm) Volumetric Flow Rate (dscfm) Carbon Dioxide (% dry) Oxygen (% dry) Moisture (%)	300	297	296	298
	131,800	129,800	129,100	130,200
	87,400	86,500	86,000	86,600
	79,200	78,100	79,900	79,100
	12.1	12.1	12.3	12.2
	6.9	6.8	6.7	6.8
	9.39	9.75	7.12	8.76
Filterable PM _{2.5} Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.0000993	0.000425	0.00111	0.000544
	0.000180	0.000764	0.00196	0.000967
	0.0675	0.284	0.758	0.370
	0.00000300	0.0000127	0.0000336	0.0000164
>PM _{2.5} Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.00515	0.00406	0.00532	0.00484
	0.00932	0.00731	0.00941	0.00868
	3.50	2.72	3.64	3.29
	0.000156	0.000121	0.000161	0.000146
Condensable PM Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.0956	0.1353	0.0452	0.0920
	0.173	0.243	0.0800	0.165
	64.9	90.5	31.0	62.2
	0.00289	0.00403	0.00137	0.00276
Total PM _{2.5} Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.0957	0.1357	0.0463	0.0926
	0.173	0.244	0.0820	0.166
	65.0	90.8	31.7	62.5
	0.00289	0.00404	0.00141	0.00278
Total Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.101	0.140	0.0517	0.0974
	0.182	0.251	0.0914	0.175
	68.5	93.5	35.4	65.8
	0.00305	0.00416	0.00157	0.00293

Table 2– Summary of Boiler B09 Results

<u>Test Parameters</u> Date Start Time Stop Time	Run 1 6/17/2014 10:54 14:03	Run 2 6/17/2014 14:49 17:58	Run 3 6/17/2014 18:41 21:49	Average
Process Data Fuel Input (lb/run) Fuel Input (lb/hr) Production Rate (MWh/hr)	149,366 46,677 58.9	148,886 47,017 57.8	150,620 48,070 57.8	
Gas Conditions Temperature (°F) Volumetric Flow Rate (acfm) Volumetric Flow Rate (scfm) Volumetric Flow Rate (dscfm) Carbon Dioxide (% dry) Oxygen (% dry) Moisture (%)	343	342	340	342
	229,400	234,300	233,700	232,500
	146,900	150,300	150,200	149,100
	134,800	136,100	136,900	135,900
	12.7	12.7	12.7	12.7
	6.5	6.4	6.5	6.5
	8.28	9.49	8.88	8.89
Filterable PM _{2.5} Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.00108	0.00153	0.000246	0.000955
	0.00181	0.00258	0.000414	0.00160
	1.25	1.79	0.289	1.11
	0.0000268	0.0000381	0.00000601	0.0000236
>PM _{2.5} Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.00419	0.00434	0.00715	0.00523
	0.00699	0.00729	0.0120	0.00877
	4.84	5.06	8.40	6.10
	0.000104	0.000108	0.000175	0.000129
Condensable PM Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.0129	0.0467	0.0469	0.0355
	0.0215	0.0784	0.0788	0.0596
	14.9	54.4	55.1	41.5
	0.000319	0.00116	0.00115	0.000874
Total PM _{2.5} Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.0140	0.0482	0.0472	0.0364
	0.0233	0.0809	0.0792	0.0612
	16.1	56.2	55.3	42.6
	0.000346	0.00120	0.00115	0.000898
Total Results Concentration (grains/dscf) Emission Rate (lb/MMBtu) Emission Rate (lb/hr) Emission Rate (lb/ton fuel input)	0.0182	0.0525	0.0543	0.0417
	0.0303	0.0882	0.091	0.0699
	21.0	61.3	63.7	48.7
	0.000449	0.00130	0.00133	0.00103

Test Procedures

Method Listing

The test methods found in 40 CFR Part 60, Appendix A and 40 CFR Part 51, Appendix M were referenced during the test program. The following individual methods were used:

EPA Method 1	Sample and Velocity Traverse for Stationary Sources
EPA Method 2	Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S pitot tube)
EPA Method 3	Determination of oxygen and carbon dioxide concentrations in emissions from stationary sources
EPA Method 4	Determination of Moisture Content in Stack Gases
EPA Method 19	Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxides Emission Rates
EPA Method 201A	Determination of PM10 emissions (constant sampling rate procedure)
EPA Method 202	Dry impinger method for determining condensable particulate emissions from stationary sources

Method Descriptions

Method 1

Method 1 was used to determine the suitability of each test location and to determine the sample points used for the pollutant concentration determinations. Each test location conformed to the minimum requirements of being located at least 2.0 diameters downstream and at least 0.5 diameters upstream from the nearest flow disturbance.

The Boiler B28 (B08) test location was a rectangular, vertical duct with dimensions of 124.75 inches by 60.0 inches. Three points were sampled for each of the five test ports. The test ports were located approximately 4.4 equivalent diameters downstream and approximately 8.9 equivalent diameters upstream from the nearest flow disturbances. A cross section of the sampling location, showing the sample points, can be found in Figure 1 of the Appendix.

The Boiler B09 test location was a round, vertical stack with a diameter of 108 inches. Six points were sampled for each of the two test ports. The test ports were located approximately 3.3 diameters downstream and approximately 2.0 diameters upstream from the nearest flow disturbances. A cross section of the sampling location, showing the sample points, can be found in Figure 2 of the Appendix.

Method 2

Method 2 was used to determine the gas velocity through each test location using a Type-S pitot tube and an incline plane oil manometer. The values measured in Method 2, along with the measurements made in Methods 3 and 4, were used to calculate the volumetric flow rate through the test location. A diagram of the Method 2 apparatus is shown as part of the Method 201A/202 sampling train in Figure 3 of the Appendix.

The manometer was leveled and "zeroed" prior to each test run. The sample train was leak checked before and after each run by pressurizing the positive side, or "high" side, of the pitot tube, creating a deflection on the manometer of at least three inches H_2O . The leak check was considered valid if the manometer remained stable for 15 seconds. This procedure was repeated on the negative side by generating a vacuum of at least three inches H_2O . The velocity head pressure and gas temperature were then determined at each point specified in Method 1. The static pressure of the stack was measured using a water filled U-tube manometer. In addition, the barometric pressure was measured and recorded.

Method 3

The carbon dioxide and oxygen contents were determined at the test location using EPA Method 3. A gas sample was collected into a Tedlar bag from the dry gas meter exhaust of the Method 5 sampling train for the duration of each test run. Analysis was performed using an Orsat gas analyzer.

The gas analyzer was leak checked prior to analysis by raising the liquid levels in each pipette to a reference mark on the capillary tubes and then closing the pipette valves. The burette solution was then raised to bring the meniscus onto the graduated portion of the burette and the manifold valve was closed. After four minutes, the pipette meniscus did not fall below the reference mark and the burette meniscus did not fall by more than 0.2 percent, so the leak check was considered valid. The average of three gas analyses determined the carbon dioxide and oxygen contents.

The carbon dioxide content and oxygen content were used, along with the moisture content determined in Method 4 to calculate the gas stream molecular weight. The molecular weight was then used for the volumetric flow rate calculations. For these calculations, the balance of the gas stream was assumed to consist of nitrogen since other gas stream components are insignificant for the purposes of calculating molecular weight.

Method 4

EPA Method 4 was used to determine the moisture content at each test location. A known volume of sample gas was withdrawn from each source and the moisture was condensed and measured. The dry standard volume of the sample gas was then compared to the volume of moisture collected to determine the moisture content of the sample gas. The Method 4 apparatus is shown as part of the Method 201A/202 sample train in Figure 3 of the Appendix.

To condense the water vapor the gas sample passed through a series impingers. The impingers were charged as outlined in Method 201A/202. In all trains, the last impinger contained a known weight of silica gel to absorb any residual water vapor.

After the test run the sample train was leak checked at the highest vacuum encountered during the test run. The amount of water collected in the condenser system and the silica gel weight gain was determined gravimetrically. The net weight gain of water was converted to a volume of wet gas and then compared to the amount of dry gas sampled to determine the moisture content. The moisture content was used, along with the oxygen and carbon dioxide content determined by EPA Method 3A, for the calculation of the volumetric flow rate.

Method 19

The equations in EPA Method 19 were used to calculate the emission rates of PM from the test location in units of pounds per million British thermal units (lb/mmBtu). The calculation was based on the carbon dioxide content of the sample gas and an appropriate F factor, which is the ratio of combustion gas volumes to heat inputs.

Method 201A/ 202

Methods 201A and 202 were used to determine the emissions of particulate matter less than or equal to 2.5 microns ($PM_{2.5}$) in diameter, CPM and total PM. In Method 201A, a sample of the gas stream was withdrawn isokinetically from the stack. The particulate matter greater than 2.5 microns was separated by an in-stack cyclone. The particulate less than 2.5 microns was then collected on an insitu glass filter and in a glass impinger system. A diagram of the Method 201A/202 sampling train can be found in Figure 3 of the Appendix.

The in-stack cyclone and nozzle assembly were constructed of stainless steel. Sample gas passed through the nozzle and cyclone assembly and then through an in-stack glass filter. After exiting the filter, the sample gas passed through an EPA Method 23 type glass coil condenser and then through a series of four (4) glass impingers. The condenser was cooled with a water recirculation pump that was placed in a water bath. The recirculation pump and coiled condenser are used to maintain the gas temperature between 65°F and 85°F at the exit of the CPM filter. Impingers 1 and 2 were initially empty. A Teflon fiber CPM filter followed impinger 2. Impinger 3 contained 100ml of water. The fourth impinger contained a known mass of silica gel to absorb any remaining water vapor. The dry gas exiting the moisture condenser system then passed through a sample pump and a dry gas meter to measure the gas volume. After leaving the dry gas meter the sample stream passed through an orifice which was used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline plane oil manometer.

Prior to the test run, the filter was weighed to the nearest 0.0001 gram and loaded into the filter holder. The sample rate was calculated to maintain a 10 micron cut point with the

cyclone. The maximum and minimum velocity head pressures (ΔP min and ΔP max) for 11 different nozzle sizes were calculated based on the gas conditions of the test locations. A sample nozzle was chosen so that the velocity head pressures at each sample point fell within the calculated ΔP min and ΔP max. After assembly, the sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum greater than the highest vacuum expected during the test run. A leak check was considered valid if the leak rate was below the lesser of 0.02 cubic feet per minute or four percent of the average sample rate.

The probe tip was placed at the first of the sample points determined in Method 1. The velocity at the sample point was determined using Method 2 by reading the velocity pressure from the oil manometer. Sample was withdrawn from the source throughout the test at the pre-calculated sample rate. During the test run the train was moved to each of the Method 1 sample points. The sample time at each point was then calculated such that the time at each point was proportional to the gas velocity. The run time was determined such that a minimum sample volume of 60 dry standard cubic feet was collected. The gas velocity pressure, gas meter reading, gas meter inlet and outlet temperatures, gas meter orifice pressure and pump vacuum were recorded at each sample point.

After the test run, the cyclone and filter assembly were removed from the probe and the sample train was leak checked at the highest vacuum encountered during the test run. The sampling train was moved to the on-site lab and purged with zero grade nitrogen at a nominal flow rate of at least 14 liters per minute for a period of 60 minutes. The nozzle, probe and front half of the filter holder were washed with acetone and the rinse saved in a 250ml glass jar equipped with a Teflon lid. The glass fiber filter was removed from the filter holder, transferred to a labeled Petri dish and sealed. The tube leading from the cyclone to the filter holder, as well as the front half of the filter holder were washed with acetone and the rinse saved. The condensate weight gain of the impinger contents was determined as outlined in Method 4.

Upon completion of the purge, the contents of impingers one and two were transferred to a pre-cleaned 950 ml sample jar equipped with a Teflon lid. The condenser coil and all connecting glassware up to and including the front half of the CPM filter were rinsed twice with deionized ultra-filtered (DUIF) water and added to the sample jar. An acetone rinse of the above glassware was performed and saved in a separate pre-cleaned 500ml sample jar equipped with a Teflon lid. Finally, two (2) rinses of the above components were performed with hexane and added to the acetone container. The CPM filter was removed from the filter holder and placed in a 40ml glass jar.

Analysis of all sample fractions was performed at the Airtech laboratory located in Elk Grove Village, Illinois. The acetone rinses from the Method 5 portion of the sampling train were transferred to tared beakers, evaporated to dryness under ambient temperature and pressure conditions, desiccated for 24 hours and weighed to a constant weight. A weight was considered constant when the difference between two consecutive weights, taken a minimum of six hours apart, was less than or equal to 0.0005 grams. The weight

gain of the glassware rinses and glass fiber filter yielded the total weight of filterable particulate collected during sampling. The acetone fraction of the analysis was adjusted for the appropriate blank values.

Inorganic extraction of the CPM filter was performed by placing the filter into an extraction tube with DIUF water and placing it into a sonication bath for a minimum of 2 minutes. This extraction was done a total of 3 times and the water used each time was added to the impinger water container. After inorganic extraction of the CPM filter, an organic extraction of the impinger water was performed.

Organic CPM extraction of the filter was performed by placing the inorganic extracted filter into an extraction tube with hexane and placing it into a sonication bath for a minimum of 2 minutes. This extraction was done a total of 3 times and the hexane used was added to the acetone/hexane container.

The entire contents of the impinger water sample fraction were placed in a separatory funnel. A 30 ml aliquot of Hexane was added to the funnel and the funnel contents were thoroughly mixed. The organic layer was then allowed to separate from the water and the inorganic fraction was decanted from the bottom of the funnel into the impinger catch sample jar. This procedure was conducted three (3) times to complete the extraction.

The inorganic fraction was then transferred into a beaker and evaporated down to not less than 10 ml final volume at an elevated temperature. The remaining volume was evaporated to dryness at ambient temperature. The beaker was desiccated for 24 hours and then weighed to a constant weight.

The organic fraction was then transferred into a beaker and evaporated to dryness at ambient temperature and pressure. The beaker desiccated for 24 hours and then weighed to a constant weight.

The weight differences for the organic and inorganic fractions were combined to determine the total condensable particulate collected. All fractions of the CPM analysis were adjusted for the appropriate blank values.

Description of Installation

Manitowoc Public Utilities (MPU) is an electric cogenerating facility located in the city of Manitowoc Wisconsin. This plant includes two atmospheric pressure, circulating fluidized bed (CFB) boilers, designated as Boilers 8 (B28) and 9 (B09). Boiler 8 was installed in 1990, and is permitted to fire coal, petroleum coke, paper pellets, biomass, rubber waste derived fuels, natural gas, or other alternative fuels as approved by the Department. The Foster Wheeler Fluidized Bed Boiler is rated at 200,000 lbs. of superheated steam per hour at 975 psig and 905 degrees F. It is equipped with an economizer and air preheater and exhausts through a baghouse.

The plant also includes Boiler B10, a natural gas-fired package boiler fired with a heat input rating of 33 mmBtu/hr. Boiler B10 does not have the ability to power the existing MPU electrical steam turbines and only serves as an auxiliary boiler for the heating plant. Boiler B10 discharges into stack S10 along with boiler 9 and diesel unit #2.

Sample Calculations, Boiler 28, Run 1

Area of Sample Location

$$A_{s} = \frac{l}{12} \times \frac{w}{12}$$

$$A_{s} = \frac{124.75}{12} \times \frac{60}{12}$$

$$A_{s} = 52.0 ft^{2}$$

where:

= area of sample location (ft²) = diameter of sample location A_s = diameter of sample location (in)

12 = conversion factor (in/ft)

= conversion factor (diameter to radius)

Stack Pressure Absolute

$$\begin{split} P_{a} &= P_{b} + \frac{P_{s}}{13.6} \\ P_{a} &= 29.50 + \frac{-12.6}{13.6} \\ P_{a} &= 28.57 in. Hg \end{split}$$

where:

 P_a = stack pressure absolute (in. Hg) = barometric pressure (in. Hg) = static pressure (in. H_2O)

13.6 = conversion factor (in. H₂O/in. Hg)

Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(62.54)(1.0024)\left(29.50 + \frac{0.410}{13.6}\right)}{(65.5 + 460)}$$

$$V_{m(std)} = 62.14scf$$

where:

 $\begin{array}{lll} V_{m(std)} & = volume \ of \ gas \ collected \ at \ standard \ temperature \ and \ pressure \ (scf) \\ V_m & = volume \ of \ gas \ sampled \ at \ meter \ conditions \ (ft^3) \\ Y_d & = gas \ meter \ correction \ factor \ (dimensionless) \\ P_b & = barometric \ pressure \ (in. \ Hg) \\ \Delta H & = average \ sample \ pressure \ (in. \ H_2O) \\ T_m & = average \ gas \ meter \ temperature \ (^oF) \\ 13.6 & = conversion \ factor \ (in. \ H_2O/in. \ Hg) \\ \end{array}$

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg) 460 = conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$\begin{aligned} V_{w(std)} &= 0.04715 \times \left(V_{wc} + V_{wsg} \right) \\ V_{w(std)} &= 0.04715 \times \left(114.3 + 22.3 \right) \\ V_{w(std)} &= 6.44scf \end{aligned}$$

where:

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

 V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g)

0.04715 = volume occupied by one gram of water at standard temperature and

pressure (ft^3/g)

Percent Moisture¹

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$

$$B_{ws} = 100 \times \left[\frac{6.44}{(62.14 + 6.44)} \right]$$

$$B_{ws} = 9.39\%$$

where:

 B_{ws} = moisture content of the gas stream (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

100 = conversion factor

Molecular Weight of Dry Gas Stream²

$$\begin{split} M_d = & \left(44 \times \frac{\%CO_2}{100} \right) + \left(32 \times \frac{\%O_2}{100} \right) + \left(28 \times \frac{\left(\%N_2\right)}{100} \right) \\ M_d = & \left(44 \times \frac{12.1}{100} \right) + \left(32 \times \frac{6.9}{100} \right) + \left(28 \times \frac{\left(81.0\right)}{100} \right) \end{split}$$

 $M_d = 30.21 lb / lbmole$

where:

M_d = molecular weight of the dry gas stream (lb/lb-mole)

%CO₂ = carbon dioxide content of the dry gas stream (%)

= molecular weight of carbon dioxide (lb/lb-mole)

%O₂ = oxygen content of the dry gas stream (%) 32 = molecular weight of oxygen (lb/lb-mole) %N = nitrogen content of the dry gas stream (%)

 $%N_2$ = nitrogen content of the dry gas stream (%)

= molecular weight of nitrogen and carbon monoxide (lb/lb-mole)

100 = conversion factor

¹ The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.

² The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$\begin{split} \boldsymbol{M_s} = & \left(\boldsymbol{M_d} \times \left(1 - \frac{\boldsymbol{B_{ws}}}{100}\right)\right) + \left(18 \times \frac{\boldsymbol{B_{ws}}}{100}\right) \\ \boldsymbol{M_s} = & \left(30.21 \times \left(1 - \frac{9.39}{100}\right)\right) + \left(18 \times \frac{9.39}{100}\right) \\ \boldsymbol{M_s} = & 29.06lb/lbmole \end{split}$$

where:

M_s = molecular weight of the wet gas stream (lb/lb-mole)
M_d = molecular weight of the dry gas stream (lb/lb-mole)

B_{ws} = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole)

100 = conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49 \left(C_{p} \left(\sqrt{\Delta P}\right) \sqrt{\frac{\left(T_{s} + 460\right)}{\left(M_{s} \left(P_{b} + \frac{P_{s}}{13.6}\right)\right)}}$$

$$V_{s} = 85.49 (0.84)(0.615) \sqrt{\frac{\left(300 + 460\right)}{\left(29.06\right)\left(29.50 + \frac{-12.6}{13.6}\right)}}$$

$$V_s = 42.3 \, ft \, / \sec$$

where:

 V_s = average velocity of the gas stream (ft/sec)

C_p = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1/2}

 T_s = average stack temperature (${}^{\circ}F$)

M_s = molecular weight of the wet gas stream (lb/lb-mole)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(0 R)(in. H₂O)]) $^{1/2}$

 $= conversion (^{o}F to ^{o}R)$

13.6 = conversion factor (in. H_2O/in . H_3O/in .

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

$$Q_a = 60(42.3)(52.0)$$

$$Q_a = 131,849$$
 acfm

where:

= volumetric flow rate of the gas stream at actual conditions (acfm)

= average velocity of the gas stream (ft/sec)

Q_a = volumetric flow rate of the V_s = average velocity of the gas A_s = area of duct or stack (ft²) = conversion factor (reinf) = conversion factor (min/hr)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$

$$Q_{std} = \frac{17.64(131,849)\left(29.50 + \frac{-12.6}{13.6}\right)}{(300 + 460)}$$

$$Q_{std} = 87,420scfm$$

where:

= volumetric flow rate of the gas stream at standard conditions (scfm) Q_{std}

= volumetric flow rate of the gas stream at actual conditions (acfm) Qa

 T_s = average stack temperature (°F) = barometric pressure (in. Hg) P_b

 P_s = static pressure of gas stream (in. H₂O) 13.6 = conversion factor (in. $H_2O/in. Hg$)

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

= conversion (°F to °R) 460

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

$$Q_{dstd} = 87,420 \left(1 - \frac{9.39}{100} \right)$$

$$Q_{dstd} = 79,242 dsc fm$$

where:

Q_{dstd} = volumetric flow rate of the gas stream at standard conditions, on a dry

basis (dscfm)

Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm)

 B_{ws} = moisture content of the gas stream (%)

100 = conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.200}{2 \times 12}\right)^2$$

$$A_n = 0.000218 ft^2$$

where:

 A_n = area of nozzle (ft^2)

 $d_n = diameter of nozzle (in)$

= conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Percent Isokinetic

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945(300 + 460)(62.14)}{\left(29.50 + \frac{-12.6}{13.6}\right)(42.3)(2.18 \times 10^{-4})(180)\left(1 - \frac{9.39}{100}\right)}$$

$$I = 103.9\%$$

where:

I = percent isokinetic (%)

 T_s = average stack temperature (${}^{\circ}F$)

 $V_{\text{m(std)}} \qquad = \text{volume of gas collected at standard temperature and pressure (scf)}$

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O) V_s = average velocity of the gas stream (ft/sec)

 A_n = cross sectional area of nozzle (ft^2)

 Θ = sample time (min)

 B_{ws} = moisture content of the gas stream (%)

0.0945 = constant (0 R/in. Hg) 460 = conversion (0 F to 0 R)

13.6 = conversion factor (in. $H_2O/in Hg$)

100 = conversion factor

Acetone Wash Blank Correction³

$$W_a = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_a = \frac{(0.0000)(38)}{200}$$

$$W_a = 0.0000g$$

where:

W_a = wash blank correction (g)

 m_{ab} = mass of particulate in acetone wash blank (g)

v_{aw} = volume of acetone wash (g) v_{awb} = volume of acetone wash blank (g)

Mass in Front Half, Acetone Blank Corrected

$$\begin{split} m_f &= m_{fil} + (m_a - W_a) \\ m_f &= 0.0001 + (0.0003 - 0.0000) \\ m_f &= 0.0004g \\ \text{where:} \\ m_f &= \text{mass in front half filter, and acetone wash, blank corrected (g)} \\ m_{fil} &= \text{mass in front half filter (g)} \\ m_a &= \text{mass in acetone wash (g)} \\ W_a &= \text{particulate mass in acetone wash blank (g)} \end{split}$$

³ Blank corrections for all particulate matter are performed in the same manner.

Filterable PM_{2.5} Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.0004)(15.43)}{62.14}$$

$$C_{gr/dscf} = 0.0000993 grains / dscf$$

where:

 $C_{gr/dscf}$ = particulate concentration (grains/dscf)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

15.43 = conversion factor (grains/g)

Filterable PM_{2.5} Emission Rate, lb/mmBtu⁴

$$E_{lb/mmBtu} = \frac{(M_n)(F_c)(100)}{(V_{m(std)})(453.6)(CO_2)}$$

$$E_{lb/mmBtu} = \frac{(0.0004)(1,528)(100)}{(62.14)(453.6)(12.1)}$$

$$E_{lb/mmBtu} = 0.000180lb/mmBtu$$

where:

 $E_{lb/mmBtu}$ = particulate emission rate (lb/mmBtu)

 M_n = total particulate catch (g)

Fc = carbon dioxide based fuel factor for natural gas (scf.mmBtu)

100 = conversion factor (%) 453.6 = conversion factor (g/lb)

CO₂ = carbon dioxide concentration in sample gas (%)

⁴ All lb/mmBtu emission rates were calculated in a similar manner.

Filterable PM_{2.5} Emission Rate, lb/hr⁵

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m(std)})(453.6)}$$

$$E_{lb/hr} = \frac{(0.0004)(79,242)(60)}{(62.14)(453.6)}$$

$$E_{lb/hr} = 0.0675lb/hr$$

where:

 $E_{lb/hr}$ = particulate emission rate (lb/hr)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)

⁵ All PM lb/hr emission rates were calculated in a similar manner.

Sample Calculations, Method 201A, Run 1

Stack Gas Viscosity

$$u_s = 51.05 + (0.207(T_s + 460)) + (3.24 \times 10^{-5} (T_s + 460)^2) + \left(\frac{53.147 \times \% O_2}{100}\right) - \left(\frac{74.143 + B_{ws}}{100}\right)$$

$$u_s = 51.05 + (0.207(300 + 460)) + (3.24 \times 10^{-5} (300 + 460)^2) + \left(\frac{53.147 \times 6.9}{100}\right) - \left(\frac{74.143 \times 9.39}{100}\right)$$

$$u_s = 224 \text{micropoise}$$
where:
$$u_s = \text{stack gas viscosity (micropoise)}$$

$$51.05 = \text{viscosity constant (micropoise)}$$

$$0.207 = \text{viscosity constant (micropoise)}$$

$$T_s = \text{average stack temperature (°F)}$$

$$460 = \text{conversion factor (°F to °R)}$$

$$3.24 \times 10^{-5} = \text{viscosity constant (micropoise/}^{\circ} R^2)$$

$$53.147 = \text{viscosity constant (micropoise/}^{\circ} R^2)$$

$$74.143 = \text{viscosity constant (micropoise/}^{\circ} Fraction H_2O)$$

$$B_{ws} = \text{moisture content of the gas stream (%)}$$

Actual Flow Rate at the Nozzle

$$\begin{split} Q_{s(noz)} &= \frac{T_s + 460}{(17.64)(P_a)} \times \left(\frac{V_{m(std)}}{\Theta} + \frac{V_{w(std)}}{\Theta}\right) \\ Q_{s(noz)} &= \frac{300 + 460}{(17.64)(28.57)} \times \left(\frac{62.14}{180} + \frac{6.44}{180}\right) \\ Q_{s(noz)} &= 0.575 acfm \end{split}$$

where:

= flow rate at actual cyclone conditions (acfm) $Q_{s(noz)}$ T_s = average stack temperature (°F) 460 = conversion (°F to °R) 17.64 = conversion factor (°R/in.Hg) P_a = absolute stack pressure (in.Hg) = volume of gas collected at standard conditions (scf) $V_{m(std)}$ = volume of water vapor at standard conditions (scf) $V_{w(std)}$ Θ = sample time (min)

D₅₀ Cut Point

$$D_{50} = 0.15625 \left(\frac{T_s + 460}{(M_s)(P_a)} \right)^{0.2091} \left(\frac{u_s}{Q_{s(noz)}} \right)^{0.7091}$$

$$D_{50} = 0.15625 \left(\frac{300 + 460}{(29.06)(28.57)} \right)^{0.2091} \left(\frac{224}{0.575} \right)^{0.7091}$$

$$D_{50} = 2.48um$$

where:

D₅₀ = diameter of particles having a 50% probability of penetration (um)

T_s = average stack temperature (°F) 460 = conversion factor (°F to °R)

M_s = molecular weight of the wet gas stream (lb/lb-mole)

P_a = absolute stack pressure (in.Hg) u_s = stack gas viscosity (micropoise)

 $Q_{s(noz)}$ = flow rate at actual cyclone conditions (acfm)

EDA Mathada 4.4 0045 Paranatara	Post 4	D 0	Down 0
EPA Methods 1-4, 201A Parameters	Run 1 6/19/2014	Run 2 6/19/2014	Run 3
Date Start Time	8:14	11:59	6/19/2014 15:32
Stop Time	11:16	15:01	18:34
COP TIME	11.10	10.01	10.04
Dimensions of Sample Location, D _s (in)	124.75 X 60	124.75 X 60	124.75 X 60
Velocity Pressure, ΔP ^{1/2} avg (in. H ₂ O ^{1/2})	0.615	0.607	0.607
Barometric Pressure, Pb (Inches Hg)	29.50	29.50	29.50
Static Pressure, P _s (Inches H ₂ O)	-12.6	-12.6	-12.6
Pitot Coefficient, Cp	0.84	0.84	0.84
Sample Location Temperature, T _s (°F)	300	297	296
Volume Metered, V _m (ft ³)	62.54	63.58	63.93
Meter Temperature, T _m (°F)	65.5	77.9	84.1
Average Sample Pressure, ΔH _{avg} (in. H ₂ O)	0.410	0.410	0.410
Gas Meter Correction Factor, Y _d	1.0024	1.0024	1.0024
Carbon Dioxide (% dry)	12.1	12.1	12.3
Oxygen (% dry)	6.9	6.8	6.7
Weight of Water Collected, V _{wc} (g)	114.3	116.2	85.8
Silica Gel Net Weight, Vwsq (g)	22.3	25.3	14.0
Diameter of Nozzle, D _n (in)	0.200	0.200	0.200
Run Time, θ (minutes)	180	180	180
EPA METHODS 1-4, 201A RESULTS			
Area of Sample Location, A _s (ft ²)	52.0	52.0	52.0
Stack Pressure Absolute (inches Hg)	28.57	28.57	28.57
Volume Metered Standard, V _{m(std)} (ft ³)	62.14	61.72	61.35
Volume of Water Vapor, V _{w(std)} (ft ³)	6.44	6.67	4.71
Percent Moisture, B _{we} (%)	9.39	9.75	7.12
Moisture Saturation Point, B _{wsat} (%)	100	100	100
Dry Molecular Weight, M _d (lbs/lb mole)	30.21	30.21	30.24
Wet Molecular Weight, M _s (lbs/lb mole)	29.06	29.02	29.37
Gas Velocity, V _s (ft/sec)	42.3	41.6	41.4
Average Flowrate, Q _e (acfm)	131,849	129,797	129,083
Standard Flowrate, Q _{std} (scfm)	87,420	86,477	86,016
Dry Standard Flowrate, Q _{datd} (dscfm)	79,242	78,073	79,921
Area of Nozzle, A _n (ft ²)	0.000218	0.000218	0.000218
Actual Flow Rate (cfm)	0.575	0.570	0.551
Viscosity (u _s)	224	223	224
Isokinetics (%)	103.9	104.7	101.7
\ C			
Viscosity (u _s)	224	223	225
Cunningham Correction Factor , C	1.10	1.10	1.10
Sampling Rate, Q _s (acfm)	0.575	0.570	0.551
Dry Sampling Rate, Q _{ds} (dscfm)	0.345	0.343	0.341
Velocity of Gas in Nozzle, V _n (ft/sec)	43.9	43.6	42.1
Minimum Nozzle / Stack Velocity Ratio Parameter, R _{min}	0.639	0.639	0.630
Max Nozzle / Stack Velocity Ratio Parameter, R _{max}	1.29	1.30	1.30
Minimum Gas Velocity, V _{min} (ft/sec)	28.1	27.8	26.5
Maximum Gas Velocity, V _{max} , (ft/sec)	56.8	56.4	54.7
Minimum Velocity Pressure, ΔP _{min} (in H2O)	0.167	0.165	0.151
Maximum Velocity Pressure, ΔP_{max} (in H2O)	0.685	0.677	0.643
Particle Cut Diameter for N _{re} < 3,162 for 2.5 Cyclone D ₅₀	2.48	2.48	2.59
Re-estimated Cunningham Correction Factor (Cr)	1.09	1.09	1.09
Re-calulated Particle Cut Diameter for N _{re} < 3,162 for 2.5 Cyclone D ₅₀₋₁	2.49	2.49	2.60
Ratio (Z) Between D50 and D50-1	1.00	1.00	1.01
D ₆₀ (um)	10.5	10.5	10.8

EPA METHOD 201A/202 RESULTS	Run 1	Run 2	Run 3
Filterable PM _{2.5}			
Filter (g)	0.0001	0.0001	0.0000
PM<2.5 Front-Half Wash (g)	0.0003	0.0015	0.0044
Front-Half Particulate (g)	0.0004	0.0017	0.0044
Concentration (grains/dscf)	0.0000993	0.000425	0.00111
Emission Rate, Fc (lb/mmBtu)	0.0000993	0.000423	0.00111
Emission Rate (lb/hr)	0.0675	0.284	0.758
> PM _{2.5}			
Front-Half Particulate (g)	0.0207	0.0162	0.0212
Concentration (grains/dscf)	0.00515	0.00406	0.00532
Emission Rate, Fc (lb/mmBtu)	0.00932	0.00731	0.00941
Emission Rate (lb/hr)	3.50	2.72	3.64
Condensable PM			
Back-Half Inorganic Fraction (g)	0.3819	0.5282	0.1736
Back-Half Organic Fraction (g)	0.0051	0.0129	0.0063
Ammonium Hydroxide Correction (g)	0.0000	0.0000	0.0000
Ammonium Hydroxide Corrected Inorganic Fraction (g)	0.3819	0.5282	0.1736
Field Blank Correction (g)	0.0020	0.0000	0.0000
Back-Half Particulate (g)	0.3850	0.5411	0.1798
basic riali i di libaliato (g)	0.0000	0.0411	0.1730
Concentration (grains/dscf)	0.0956	0.135	0.0452
Emission Rate, Fc (lb/mmBtu)	0.173	0.243	0.0800
Emission Rate (lb/hr)	64.9	90.5	31.0

EPA Methods 1-4, 201A Parameters	Run 1	Run 2	Run 3
Date	6/17/2014	6/17/2014	6/17/2014
Start Time	10:54	14:49	18:41
Stop Time	14:03	17:58	21:49
Dimensions of Sample Location, D _s (in)	108	108	108
Velocity Pressure, ΔP ^{1/2} avg (in. H ₂ O ^{1/2})	0.863	0.880	0.879
Barometric Pressure, P _b (Inches Hg)	29.15	29.15	29.15
Static Pressure, P _s (Inches H ₂ O)	0.1	0.1	0.1
Pitot Coefficient, Cp	0.84	0.84	0.84
Sample Location Temperature, T _s (°F)	343	342	340
Volume Metered, V _m (ft ³)	67.14	67.47	65.73
Meter Temperature, T _m (°F)	99.5	98.2	81.3
Average Sample Pressure, ΔH _{avg} (in. H ₂ O)	0.457	0.464	0.450
Gas Meter Correction Factor, Y _d	1.0024	1.0024	1.0024
Carbon Dioxide (% dry)	12.7	12.7	12.7
Oxygen (% dry)	6.5	6.4	6.5
Weight of Water Collected, Vwc (g)	97.3	116.2	114.4
Silica Gel Net Weight, Vwex (g)	21.3	22.5	15.2
Diameter of Nozzle, D _n (in)	0.175	0.175	0.175
Run Time, θ (minutes)	180	180	180
, , , , , , , , , , , , , , , , , , , ,			
EPA METHODS 1-4, 201A RESULTS			
Area of Sample Location, A _s (ft ²)	63.6	63.6	63.6
Stack Pressure Absolute (inches Hg)	29.16	29.16	29.16
Volume Metered Standard, V _{m(std)} (ft ³)	61.92	62.38	62.67
Volume of Water Vapor, V _{w(std)} (ft ³)	5.59	6.54	6.11
Percent Moisture, B _{we} (%)	8.28	9.49	8.88
Moisture Saturation Point, B _{weat} (%)	100	100	100
Dry Molecular Weight, M _d (lbs/lb mole)	30.30	30.28	30.29
Wet Molecular Weight, M _s (lbs/lb mole)	29.28	29.12	29.20
Gas Velocity, V _s (ft/sec)	60.1	61.4	61.2
Average Flowrate, Q _a (acfm)	229,379	234,317	233,657
Standard Flowrate, Q _{std} (scfm)	146,876	150,303	150,207
Dry Standard Flowrate, Q _{detd} (dscfm)	134,764	136,095	136,916
Area of Nozzle, An (ft²)	0.000167	0.000167	0.000167
Actual Flow Rate (cfm)	0.586	0.597	0.594
Viscosity (u _s)	236	234	234
Isokinetics (%)	97.3	97.0	96.9
Viscosity (u _s)	235	233	233
Cunningham Correction Factor , C	1.11	1.11	1.11
Sampling Rate, Q _s (acfm)	0.586	0.597	0.594
Dry Sampling Rate, Q _{ds} (dscfm)	0.344	0.347	0.348
Velocity of Gas in Nozzle, V _n (ft/sec)	58.4	59.6	59.3
Minimum Nozzle / Stack Velocity Ratio Parameter, R _{min}	0.696	0.699	0.698
Max Nozzle / Stack Velocity Ratio Parameter, R _{max}	1.27	1.26	1.27
Minimum Gas Velocity, V _{min} (ft/sec)	40.7	41.6	41.4
Maximum Gas Velocity, V _{max} , (ft/sec)	74.0	75.3	75.0
Minimum Velocity Pressure, ΔP _{min} (in H2O)	0.341	0.356	0.354
Maximum Velocity Pressure, ΔP _{mex} (in H2O)	1.13	1.17	1.16
Particle Cut Diameter for N _{re} < 3,162 for 2.5 Cyclone D ₅₀	2.60	2.53	2.54
Re-estimated Cunningham Correction Factor (Cr)	1.09	1.09	1.09
Re-calulated Particle Cut Diameter for N _{re} < 3,162 for 2.5 Cyclone D ₅₀₋₁	2.61	2.54	2.55
Ratio (Z) Between D50 and D50-1	1.01	1.01	1.01
D ₆₀ (um)	10.8	10.7	10.7

EPA METHOD 201A/202 RESULTS	Run 1	Run 2	Run 3
Eliterable DM			
Filterable PM _{2.5}			
Filter (g)	0.0001	0.0000	0.0000
PM<2.5 Front-Half Wash (g)	0.0043	0.0062	0.0010
Front-Half Particulate (g)	0.0044	0.0062	0.0010
Concentration (grains/dscf)	0.00108	0.00153	0.000246
Emission Rate, Fc (lb/mmBtu)	0.00181	0.00258	0.000240
Emission Rate (lb/hr)	1.25	1.79	0.000414
Linission rate (ibiti)	1.23	1.79	0.209
> PM _{2.5}			
Front-Half Particulate (g)	0.0168	0.0176	0.0291
Concentration (grains/dscf)	0.00419	0.00434	0.00715
Emission Rate, Fc (lb/mmBtu)	0.00699	0.00729	0.0120
Emission Rate (lb/hr)	4.84	5.06	8.40
Condensable PM			
Back-Half Inorganic Fraction (g)	0.0497	0.1869	0.1885
Back-Half Organic Fraction (g)	0.0040	0.0038	0.0041
Ammonium Hydroxide Correction (g)	0.0000	0.0000	0.0000
Ammonium Hydroxide Corrected Inorganic Fraction (g)	0.0497	0.1869	0.1885
Field Blank Correction (g)	0.0020	0.0020	0.0020
Back-Half Particulate (g)	0.0517	0.1886	0.1905
(6)	3.33.1.		0000
Concentration (grains/dscf)	0.0129	0.0467	0.0469
Emission Rate, Fc (lb/mmBtu)	0.0215	0.0784	0.0788
Emission Rate (lb/hr)	14.9	54.4	55.1

Fd and Fc Parameters	Boiler B28	Boiler B09
Hydrogen (%)	6.06	5.11
Carbon (%)	62.19	63.24
Sulfur (%)	2.61	3.98
Nitrogen (%)	0.73	1.07
Oxygen (%)	23.34	22.34
Heating Valu (Btu/lb)	13,069	13,633
Result	Sample 1	Run 3
Fd (dscf/MBtu)	8,269	7,885
Fc (dscf/MBtu)	1,528	1,489

Project Number	4784
Client	MPU
Plant	Manitowoc
Location	B28
Date	6/19/2014
Meter ID	M-30
Yd	1.0024
Pitot C,	0.84

Nozzle Diameter (in)	0.200
Filter ID	4915
Train Type	IMP
Train ID	IB 202-1
P _b (Inches Hg)	29.50
P _a (inches H ₂ O)	-12.6
Start Time	8:14
Stop Time	11:16

Circular?	
Rectangular?	х
Diameter	
Length	124.75
Width	60.0

Moisture	Final Wt	Tare Wt	Net Wt
	(g)	(g)	(g)
Impinger 1	626.9	538.3	88.6
Impinger 2	643.1	638.6	4.5
Impinger 3	623.2	602.0	21.2
Slica Gel	965.7	943.4	22.3
Weight of Wa	114.3		
Silica Gel Ne	(g)	22.3	

Analyzer	%CO ₂	%CO ₂ +%O ₂	%O ₂
Trial 1	12.0	19.0	7.0
Trial 2	12.0	19.0	7.0
Trial 3	12.2	19.0	6,8
Average	12.1	NA NA	6.9

Run 1

	Min/Pt	Velocity	Ortfice	Gas Sample					Stack	Volume	
	12	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elapsed	ΔP	ΔH	Initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in. H ₂ O)	(In. H ₂ O)	310.88	(°F)	(°F)	(°F)	ΔP	Vs (ft/sec)	(ft ³)	(%)
1-1	8.00	0.17	0.41	313.70	302	63	61	0.412	28.4	2.821	105.7
1-2	19.00	0.32	0.41	317.40	303	63	61	0.566	38.9	3.701	101.1
1-3	35.15	0.69	0.41	323.02	303	64	61	0.831	57.2	5.616	104.5
2-1	43.45	0.19	0.41	326.15	300	65	61	0.436	29.9	3.125	110.6
2-2	55.75	0.37	0.41	330.26	300	65	61	0.608	41.8	4.103	104.0
2-3	71.50	0.70	0.41	335.75	301	65	62	0.837	57.5	5.476	101.0
3-1	80.25	0.22	0.41	338.77	299	66	63	0.469	32.2	3.007	98.8
3-2	92.50	0.39	0.41	343.02	299	68	64	0.624	42.9	4.219	104.1
3-3	109.00	0.71	0.41	348.77	300	69	64	0.843	57.9	5.703	104.4
4-1	117.75	0.18	0.41	351.82	299	70	64	0.424	29.1	3.022	109.8
4-2	128.00	0.28	0.41	354.87	300	71	65	0.529	36.4	3.016	87.9
4-3	143.50	0.65	0.41	360.36	300	71	65	0.806	55.4	17.148	328.1
5-1	151.75	0.18	0.41	363.45	299	71	66	0.424	29.1	14.504	526.9
5-2	163.25	0.34	0.41	367.92	299	72	66	0.583	40.0	15.892	420.1
5-3	180.00	0.70	0.41	373.72	299	72	66	0.837	57.4	18.606	342.8

 Port 1 to 2
 Port 2 to 3
 Port 3 to 4
 Port 4 to 5

 Less Volumes for Between port Leak Checks
 0.06
 0.07
 0.09
 0.08

 Totals and Averages
 180
 0.410
 62.54
 300
 65.5
 0.615
 42.3
 62.14
 103.9

Project Number	4784
Client	MPU
Plant	Manitowoc
Location	B28
Date	6/19/2014
Meter ID	M-30
Y_d	1.0024
Pitot C.	0.84

Nozzte Diameter (in)	0.200
Filter ID	4916
Train Type	IMP
Train ID	IB 202-6
P _b (Inches Hg)	29.50
P _e (Inches H ₂ O)	-12.6
Start Time	11:59
Stop Time	15:01

Circular?	
Rectangular?	х
Dlameter	
Length	124.75
Wildth	60.0

Moisture	Final Wt	Tare Wt	Net Wt		
	(g)	(g)	(9)		
Impinger 1	608.6	526.6	82.0		
Impinger 2	641.6	636.3	5.3		
Impinger 3	779.9	751.0	28.9		
Silica Gel	857.3	832.0	25.3		
	Weight of Water Collected, V _{wo} (g)				
Silica Gel Ne	t Weight, Vwe	(g)	25.3		

Analyzer	%CO ₂	%CO ₂ +%O ₂	%O ₂
Trial 1	12,2	19.0	6.8
Trial 2	12.0	18.8	6.8
Trial 3	12.2	19.0	6.8
Average	12.1	NA NA	6.8

	Min/Pt	Velocity	Orifice	Gas Sample					Stack	Volume	
	12	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	1
Traverse	Elapsed	ΔP	ΔH	Initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(In. H ₂ O)	(in. H ₂ O)	374.65	(°F)	(°F)	(°F)	ΔP	Vs (ft/sec)	(ft ³)	(%)
5-1	8.45	0.20	0.41	377.74	297	76	75	0.447	30.7	3.013	104.1
5-2	19.25	0.29	0.41	381.42	298	77	75	0.539	37.0	3.585	102.9
5-3	35.00	0.67	0.41	386.67	298	77	75	0.819	56.2	5.114	96.6
4-1	43.50	0.19	0.41	389.99	297	78	75	0.436	29.9	3.231	114.5
4-2	54.50	0.30	0.41	393.89	297	78	75	0.548	37.6	3.796	107.0
4-3	70.50	0.65	0.41	399.36	298	79	76	0.806	55.4	5.314	101.9
3-1	79.75	0.22	0.41	402.88	296	79	76	0.469	32.2	3.420	112.5
3-2	92.00	0.38	0.41	407.22	296	79	76	0.616	42.3	4.216	105.6
3-3	108.50	0.69	0.41	413.03	297	80	77	0.831	57.0	5.634	104.7
2-1	117.00	0.19	0.41	416.02	295	80	77	0.436	29.9	2.899	102.6
2-2	127.25	0.27	0.41	419.71	296	81	77	0.520	35.6	3.575	106.2
2-3	143.25	0.66	0.41	425.42	297	81	78	0.812	55.7	5.526	105.1
1-1	152.25	0.18	0.41	428.72	295	81	78	0.424	29.1	3.194	116.1
1-2	163.75	0.33	0.41	432.75	295	82	78	0.574	39.4	3.897	104.6
1-3	180.00	0.68	0.41	438.54	296	82	78	0.825	56.5	18.208	340.8

Less Volumes for Between port Leak Checks	0.09	Port 2 to 3 0.08	Port 3 to 4 0.07	Port 4 to 5 0.07
de and functions				

Totals and Averages								
180	0.410	63.58	297	77.9	0.607	41.6	61.72	104.7

Project Number	4784	
Client	MPU	
Plant	Manitowoc	
Location	B28	
Date	6/19/2014	
Meter ID	M-30	
Yd	1.0024	
Pitot C _p	0.84	

Nozzie Diameter (in)	0.200
Filter ID	4917
Train Type	IMP
Train ID	IB 202-1
P _b (Inches Hg)	29.50
P _a (Inches H ₂ O)	-12.6
Start Time	15:32
Stop Time	18:34

Circular?	
Rectangular?	X
Diameter	
Length	124.75
Width	60.0

Moisture	Final Wt	Tare Wt	Net Wt
	(g)	(g)	(g)
Impinger 1	611.0	539.6	71.4
Impinger 2	637.3	635.7	1.6
Impinger 3	633.7	620.9	12.8
Silica Gel	951.9	937.9	14.0
	ater Collected		85.8
Silica Gel Ne	t Weight, V _{weg}	(g)	14.0

Analyzer	%CO₂	%CO ₂ +%O ₂	%O ₂
Trial 1	12.4	19.0	6.6
Trial 2	12.2	19.0	6.8
Trial 3	12.4	19.0	6.6
Average	12.3	NA NA	6.7

	Min/Pt	Velocity	Orifice	Gas Sample					Stack	Volume	
	12	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elapsed	ΔP	ΔH	Initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(In. H ₂ O)	(in. H ₂ O)	438.84	(°F)	(°F)	(°F)	ΔP	Vs (ft/sec)	(ft³)	(%)
1-1	8.75	0.19	0.41	441.91	296	81	81	0.436	29.7	2.963	102.6
1-2	19.50	0.30	0.41	445.77	296	82	81	0.548	37.3	3.722	102.5
1-3	33.75	0.68	0.41	451.57	297	83	81	0.825	58.2	5.588	102.3
2-1	44.25	0.18	0.41	454.59	298	84	82	0.424	28.9	2.904	103.3
2-2	55.25	0.31	0.41	458.50	297	84	82	0.557	38.0	3.760	101.9
2-3	71.25	0.66	0.41	464.16	297	85	82	0.812	55.4	5.438	101,0
3-1	80.75	0.23	0.41	467.53	296	85	82	0.480	32.7	3.238	101.B
3-2	92.75	0.37	0.41	471.78	297	86	83	0.608	41.5	4.076	101.1
3-3	109.00	0.69	0.41	477.56	297	87	83	0.831	56.7	5.538	100.6
4-1	117.75	0.19	0.41	480.55	296	87	83	0.436	29.7	2.865	99.1
4-2	128.00	0.28	0.41	484.39	296	87	83	0.529	36.1	3.679	104.9
4-3	144.00	0.65	0.41	489.99	297	86	84	0.806	55.0	5.356	100.3
5-1	152.25	0.18	0.41	493.06	296	88	84	0.424	28.9	2.936	104.4
5-2	163.75	0.32	0.41	497.09	296	88	84	0.566	38.6	3.854	102.8
5-3	180.00	0.68	0.41	503.06	296	89	84	0.825	56.2	17.839	326.4

 Port 1 to 2
 Port 2 to 3
 Port 3 to 4
 Port 4 to 5

 Less Volumes for Between port Leak Checks
 0.07
 0.08
 0.07
 0.07

Totals and Averages

180 0.410 63.93 296 84.1 0.607 41.4 61.35 101.7

Project Number	4784
Client	MPU
Plant	Manitowoc
Location	B09
Date	6/17/2014
Meter ID	M-30
Y _d	1.0024
Pitot C _p	0.84

Nozzle Diameter (in)	0.175
Filter ID	4912
Train Type	IMP
Train ID	IB 202-1
P _b (Inches Hg)	29.15
P _s (Inches H ₂ O)	0.1
Start Time	10:54
Stop Time	14:03

Circular?	х
Rectangular?	
Diameter	108
Length	
Width	

Molsture	Final Wt	Tare Wt	Net Wt
	(g)	(g)	(g)
Impinger 1	715.0	636.1	78.9
Impinger 2	519.5	518.8	0.7
Impinger 3	749.2	731.5	17.7
Silica Gel	846.0	824.7	21.3
Weight of Wa	97.3		
Silica Gel Ne	t Weight, Vww	(g)	21.3

Analyzer	%CO ₂	%CO ₂ +%O ₂	%O ₂
Trial 1	12.8	19.2	6.4
Trial 2	12.6	19.2	6.6
Trial 3	12.8	19.2	6.4
Average	12.7	NA NA	6.5

	Min/Pt	Velocity	Orifice	Gas Sample					Stack	Volume	
	15	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elapsed	ΔP	ΔΗ	_initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetic
Point	Time	(in. H ₂ O)	(in. H ₂ O)	953.23	(°F)	(°F)	(°F)	ΔP	Vs (ft/sec)	(ft ³)	(%)
1-1	13.00	0.55	0.45	958.01	338	88	87	0.742	51.5	4.505	98.5
1-2	26.25	0.55	0.45	962.96	338	91	88	0.742	51.5	4.648	101.6
1-3	39.75	0.60	0.45	967.91	340	96	90	0.775	53.8	4.619	96.8
1-4	56.00	0.83	0.45	974.17	343	99	92	0.911	63.5	5.815	103.8
1-5	72.50	0.91	0.46	980.13	343	103	96	0.954	66.4	5.497	93.7
1-6	90.25	1.00	0.46	986.80	344	106	99	1.000	69.7	6,119	99.6
2-1	104.25	0.64	0.46	993.95	345	106	101	0.800	55.8	6.548	133.3
2-2	118.75	0.71	0.46	999.37	345	107	101	0.843	58.8	4.959	95.8
2-3	133.50	0.73	0.46	1004.88	345	107	102	0.854	59.6	5.037	96.0
2-4	148.50	0.78	0.46	1010.49	346	108	102	0.883	61.6	5.124	94.5
2-5	163.75	0.83	0.46	1016.16	346	108	102	0.911	63.6	5.179	92.6
2-6	180.00	0.88	0.46	1022.25	346	108	102	0.938	65.5	5.562	96.6

Port 1 to 2 eak Checks 1.88

Less Volumes for Between port Leak Checks

Totals and Averages
180 0.457 67.14 343 99.5 0.863 60.1 61.92 97.3

Project Number	4784		
Client	MPU		
Plant	Manitowoc		
Location	B09		
Date	6/17/2014		
Meter ID	M-30		
Yd	1.0024		
Pitot C _p	0.84		

Nozzie Diameter (in)	0.175
Filter ID	4913
Train Type	IMP
Train ID	IB 202-6
P _b (Inches Hg)	29.15
P _a (Inches H ₂ O)	0.1
Start Time	14:49
Stop Time	17:58

Circular?	х
Rectangular?	
Diameter	108
Length	
Width	

Moisture	Final Wt	Tare Wt	Net Wt
	(g)	(g)	(g)
Impinger 1	686.4	598.7	87.7
Impinger 2	501.5	500.1	1.4
Impinger 3	763.1	736.0	27.1
Silica Gel	999.1	976.6	22.5
Weight of Wa	116.2		
Silica Gel Net	, (g)	22.5	

Analyzer	%CO ₂	%CO2+%O2	%O ₂
Trial 1	12.6	19.0	6.4
Trial 2	12.8	19.2	6.4
Trial 3	12.6	19.0	6.4
Average	12.7	NA NA	6.4

Run 2

	Min/Pt	Velocity	Orifice	Gas Sample					Stack	Volume	
	15	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elapsed	ΔP	ΔH	Initial (ft3)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in. H ₂ O)	(In. H ₂ O)	22.74	(°F)	(°F)	(°F)	ΔP	Vs (ft/sec)	(ft³)	(%)
1-1	13.00	0.57	0.48	27.62	345	99	98	0.755	52.8	4.509	98.3
1-2	26.00	0.54	0.46	32.49	348	102	99	0.735	51.5	4.484	100.6
1-3	39.50	0.63	0.46	37.53	348	105	99	0.794	55.6	4.628	96.1
1-4	55.50	0.85	0.47	43.62	347	106	100	0.922	64.5	5.582	99.7
1-5	72.15	0.93	0.47	49.98	342	107	101	0.964	67.3	5.819	99.1
1-6	90.00	1.10	0.47	56.72	342	107	101	1.049	73.2	6.167	96.6
2-1	103.75	0.67	0.47	63.45	339	101	99	0.819	57.0	6.202	124.2
2-2	118.25	0.72	0.47	68.91	339	101	97	0.849	59.1	5.040	97.4
2-3	133.26	0.77	0.46	74.50	339	99	95	0.877	61.1	5.179	96.7
2-4	148.25	0.82	0.46	80.05	338	94	92	0.906	63.0	5.179	93.7
2-5	164.00	0.86	0.46	85.87	338	91	89	0.927	64.6	5.461	96.5
2-6	180.00	0.92	0.46	91.75	337	88	86	0.959	66,7	5.547	94.7

Port 1 to 2 1.54

Less Volumes for Between port Leak Checks

Totals and Averages								
180	0.464	67.47	342	98.2	0.880	61.4	62.38	97.0

Project Number	4784
Client	MPU
Plant	Manitowoc
Location	B09
Date	6/17/2014
Meter ID	M-30
Yd	1.0024
Pitot C.	0.84

Nozzle Diameter (in)	0.175
Filter ID	4914
Train Type	IMP
Train ID	IB 202-1
Ph (Inches Hg)	29.15
P _e (Inches H ₂ O)	0.1
Start Time	18:41
Stop Time	21:49

Circular?	х
Rectangular?	
Diameter	108
Length	
Width	

Molsture	Final Wt	Tare Wt	Net Wt
	(g)	(g)	(g)
Impinger 1	728.5	637.8	90.7
Impinger 2	520.2	520.1	0.1
Impinger 3	777.7	754.1	23.6
Silica Gel	861.2	846.0	15.2
Weight of Wa		114.4	
Silica Gel Ne	t Weight, Vws	(g)	15.2

Analyzer	%CO₂	%CO ₂ +%O ₂	%O ₂
Triel 1	12.6	19.2	6.6
Trial 2	12.6	19.2	6.6
Trial 3	12.8	19.2	6.4
Average	12.7	NA NA	6.5

Run 3

MPU

	Min/Pt	Velocity	Orifice	Gas Sample					Stack	Volume	
	15	Pressure	Setting	Volume	Stack	DGM	DGM	Square	Gas	Metered	
Traverse	Elapsed	ΔP	ΔH	Initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in. H ₂ O)	(In. H ₂ O)	92.00	(°F)	(°F)	(°F)	ΔΡ	Vs (ft/sec)	(ft³)	(%)
1-1	12.75	0.56	0.45	96.63	338	75	75	0.748	52.0	4.466	97.2
1-2	25.50	0.56	0.45	101.29	339	80	75	0.748	52.1	4.474	97.5
1-3	39.25	0.65	0.45	106.33	340	82	76	0.806	56.1	4.825	97.6
1-4	55.00	0.85	0.45	112.0B	340	84	77	0.922	64.2	5.490	97.1
1-5	71.25	0.94	0.45	118.01	340	85	80	0.970	67.5	5.641	94.9
1-6	88.75	1.00	0.45	124.41	340	85	79	1.000	69.6	6.093	99.4
2-1	102.75	0.65	0.45	130.95	339	84	80	0.806	56.1	6.227	125.9
2-2	117.25	0.72	0.45	136.24	341	87	80	0.849	59.1	5.023	96.6
2-3	132.25	0.79	0.45	141.71	341	87	80	0.889	61.9	5.193	95.4
2-4	147.75	0.84	0.45	147.37	341	86	80	0.917	63.8	5.379	95.8
2-5	163.50	0.86	0.45	153.11	341	86	80	0.927	64.6	5.455	96.0
2-6	180.00	0.94	0.45	159.15	341	87	80	0.970	67.5	5,735	96.6

Port 1 to 2

Less Volumes for Between port Leak Checks 1

Totals and Averages								
180	0.450	65.73	340	81.3	0.879	61.2	62.67	96.9

General Testing Datasheet

Ė,

TESTING TYPE: PARTICULATE SIZING

Page (of 3	29.50 Water (ml) (g) 114.30 63.00 Silica gel (g) 22.30 - 13.6 Total Vic 136.60 AES-10-6 Liner Type 7FE - 360 Nozzle Dia (in.) . 300 N/A TR-202-1 Train Type 7MP 134.75 x 6.0 Port Lgth. (in.) 13.0	25 Hores RESTART: VOLUME - 333.08: 568724 S.D. PORT CHANGET S.D. PORT CHANGET S.D. RESTART VOLUME - 348.86/568.03 RESTART VOLUME - 348.86/568.03 RESTART VOLUME - 348.86/568.03 RESTART VOLUME - 360.44/508.08 PORT CHANGET S.D. PORT S.D. PORT CHANGET S.D. PORT CHANGET S.D. PORT
	Ambient Temp. (°F) Static (in. H ₂ O) Probe ID Nozzle ID Filter ID Train ID Duct Dim. (in.)	Vacuum Temp Auxiliary Vacuum Temp Vacuum Temp Vacuum Temp Vacuum Temp Vacuum Temp Vacaum T
		Section of the part of the par
303	ay (iii) fout)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
МЕТНОВ NO. 361 A/303	First point all the way (in) four) Gas flow fin] (Oth) of page Cross Section of Duct	Impinger Temp Temp 443 443 444 445 50 50 50 50 50 50 50
OD OD		Temp 750 250 250 250 250 250 250 250 250 250 2
METH	(C)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Cp . 84 (inHg)	Stack 303 303 303 303 303 303 303 303 303 30
	Ditot.	Sample Volume Initial (C) 131 - 40 315 - 30 350 - 15 335 - 15 335 - 15 335 - 15 335 - 15 335 - 15 335 - 15 335 - 15 335 - 15 335 - 15 335 - 15 355
П	Project N. B. K. B. K. B. K. Con [low]	Orffice Setting AH OH OH OH OH OH OH OH
_	M.P.W. MANITOLOGIC BELER S BELER S BELER S S S S S S S S S S S S S S S S S S S	Minipoint Velocity DWELL Pressure Elapsed Time (in H ₂ 0) \$1.00 .17 19.100 .30 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .32 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.15 .33 \$0.00 .31 \$0.
RUN NO.		Min/Point Velocity Orifice DLUCLU Pressure Setting DLUCLU Pressure Setting Orifice Original Pressure Original Pres
RU	Client Plant Location Date Meter Operator Probe Operator AH@ 1.7	Traverse Point 1-1 Corcle of Train Till Average

General Testing Datasheet

TESTING TYPE: PAPTICULATE SIZING

Page 2 of 2	34.5℃ Water (m!) (g) (53.℃ Sillea gel (g) (13.℃ Total VIC (11.00 Type 7.℃ Nozzle Dia (in.) ・20℃ (11.00 Type 7.℃ Nozzle Dia (in.) ・20℃ (12.00 Train Type 7.℃ (13.00 Train Type 7.℃ (13.00 Train Type 7.℃ (14.00 Train Type 7.೦ Train T	Notes
ı	Barometric (in. Hg) Amblent Temp. (°F) (°S) Static (in. H ₂ O) Probe ID Nozzle ID Train ID	Pump Auxiliary Vacuum Temp (in Hg) (⁴ F) S 71 S 71 S 71
МЕТНОВ NO. 2014/202	(12345) (12345) (10) (10) (10) (10) (10) (10) (10) (10	Probe Filter Impinger DGM DGM Temp <
RUN NO.	Client M. P. U.	Min/Point Velocity Orflice Gas Sample Dia 2/2 Pressure Setting Volume Stack Traverse Elapsed AP AH Initial/打学 [1] Temp Point Time (in H ₂ O) (in H ₂ O) 310.8% (PF) 5-1 5 .4% - 4 363.4% 363.4% 360.4% - 34 363.4% 360.4% - 34 363.4% 360.4% - 34 363.4% 360.4% - 34 363.4% 360.4% - 34 363.4% 360.4% - 360.4% 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% - 360.4% 360.4% - 360.4% 360

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

Total Average

General Testing Datasheet

TESTING TYPE: PARTICULATE SIZING

Page (of 3	Barometric (in. Hg) 29.50 Water (ml) (g) 116.3	Ambient Temp. (°F) (6°5.00) Silica gel (g) 25.3	Static (in. H ₂ O) - (2), (a Total Vic	Probe ID AES-10-6 Liner Type TPE	Nozzle ID 300 Nozzle Dia (in.) 300	Filter ID A/A	Train ID TA-202- (Train Type IUAP	<u>=</u>		Start Time 11:59 Stop Time 15:01	
METHOD NO. OCIA/202			←		200]	[w] Inbi	First point all the way (fout)	Gas flow [in] Of page	Cross Section of Duct	
RUN NO.	Client M.P.W.	Plant MANITOWOC, WI	Location Boulea &	Date (パーパーパー Project No. 4794	Meter Operator	Probe Operator 8.K.	74 1-0034 Pitot Cp -84	AH@ 1.740 Kf Leak check	Pre Leak Check O.CC (cm/lipm] @ (9 (inHg)	Post Leak Check (cfm) [lpm] @ (inHg)	

_																		
			Notes		PORT CHANGE W.	8 CSTORT UN 11416 - 386. 76/6. 2700-	מוצער ביין		PORT CHANGEL	Decrease the war F - 399 4/1/King (P.S.		PORT CHANGES	DESTART IN 1 11/2 16/548(67)		PORT CHANGE 12.	RESTART NOWWE-435, 49/548 (3)		TOTAL SUB. VOL.: (6.31)
	Auxiliary		(f.)	89)	360	59	70	30	15	1	73	27	17	75	Ü.			
	Pump	Vacuum	(in Hg)	e	9	9	و	و	و	3	وا	و	و	و	9			
DGM	Outlet	Temp	(F)	75	35	75	75	75	76	76	76	£	47	tt	38	30.96/	t	
DGM	Inlet	Temp	(^P F)	26	tt	200	140	*	75	52	79	250	28	00	20	1/90-00 1/46-00	£8.EE	
Impinger	Outlet	Temp	(⁰ F)	95	چ	2	47	Eħ	48	85	6/5	50	2.0	15	51			
Filter	Temp	(0F)	250	<i>ese</i>	35C	356	256	255	hSC	253	353	255	250	150	850			
Probe	Temp	(°F)	250	950	350	6hC	351	251	250	250	250	348	34g	253	35.			
	Stack	Temp	(⁷ F)	£58	860	850	£50	£60	368	960	296	543	295	396	297	4448.00	296.53	
Gas Sample	Volume	Initial [4]	(In H2O) 374.65	377.74	381.43	386.67	389.99	393.89	399.36	38. Coh	ee toh	413.03	416.63	116.71	GD:50h	(63.50)		
Orifice	Setting	ЧΨ		って	7.	٦٠ (.41	14.	14.	5,	١٠.	14.	141	ילו	19.	(51.9)	7 75-	1
Min/Point Velocity	Pressure	ΔР	(in H ₂ O)	S	-26	.64	5	.30	ios	.33	.38	99.	• 1d	-61	م)ه)۔		.60,08	
Min/Point	חשמום	Elapsed	Time	8:45	M:15	35:06	43:30	54:30	70:30	79:45	92:00	108:30	117:00	51:40	143:15	180:00 91.1015		
		Traverse	Point	.5	8	3	1-6-	G	n	3-1	0	2	2-0	0	3	Total	Average	

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

104.5%

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Datasheet

TESTING TYPE: PARTICULATE SIZING

Page 2 of 3	Barometric (In. Hg) 24.50 Water (ml) (g) 16.2	Ambient Temp. (P) (69-070 Silica gel (g) 25.3		Probe ID AES-10-6 Liner Type TFE	Nozzle ID - 200 Nozzle Dia (in.) - 200	Filter ID 7/A	Train ID T8-202-6 Train Type IMAP	2		Start Time 11:54 Stop Time 15:01	
МЕТНОВ NO. 2018/202		•		-1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4-5 -1-2-4 -1-		-	[8] [16]	First point all the way (in), fout)	Gas flow [in] (Od) of page	Cross Section of Duct	
RUN NO.	Client M.P.U.	Plant (AAN TOWOC, WI	Location Bowell 8	Date O(6-14-14 Project No. 4794	Meter Operator	Probe Operator B.K.	10 pt-30 rd (-6024 Pitot Cp -84/	AH@ 1.440 Kf / Leak check /	Pre Leak Check C.CLS (cfm/Ripm) @ (C((inHg)	Post Leak Check (inHg)	

			Notes										
	Pump Auxiliary	Temp	(F)	77	H	CL							
	Pump	Vacuum	(in Hg)	و	e	e							Į.
DGM	Outlet	Temp	(f)	٨	730	35							
DGM		Temp	(f)	×	600	3							
Filter Impinger	Outlet	Temp	(F)	53	53	53							
Filter	Temp	(F)	350	320	350	150							
Probe	Temp	(⁸ F)	250	250	64C	350							
	Stack	Temp	(⁰ F)	395	2965	296							
Gas Sample	Volume	Initial(E) [I]	(in H ₂ O) (in H ₂ O) 324. (65	7£.52h	432.75	438.54							
Orifice	Setting	₩	(In H ₂ O)	h	<u>구</u> .	17.							
Min/Point Velocity Orifice	Dwell Pressure Setting	ΔP	(in H ₂ O)	81.	.33	જુ							
Min/Point	Dwell	Traverse Elapsed	Time	51:15	ડૃત:જી	180:00 · (SS							
		Traverse	Point	!-!	0	~						Total	Average

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

General Testing Datasheet

TESTING TYPE: PARTICULATE 5 121NG

3 85.8 Nozzle Dia (in.) - 200 18.34 TMP 124.75 x46 Port Lath. (in.) 13.00 ğ Water (ml) (g) Silica gel (g) Liner Type TB-303-1 Train Type Stop Time Total VIc Page AES-10-6 24.5C 77.00 15:32 A/A 9.01-200 Ambient Temp. (⁹F) Barometric (in. Hg) Static (in. H2O) Duct Dim. (in.) Start Time Nozzle ID Probe ID Filter ID Train ID First point all the way [6] [out] Gas flow [in] Ouly of page **Cross Section of Duct** METHOD NO. 30/4/303 12345 Ido] (inHg) (InHg) Pitot Cp | .84 Leak check Project No. MANITOWOC, WI Cfm [lpm] @ cfm][lpm] @ 1.0034 3.0 Υd BoileR 0.00D M. P.W. 꿏 06-19-14 3 M-30 - 1 150 Post Leak Check Pre Leak Check Probe Operator Meter Operator RUN NO. Meter ID Location Client Plant Date ∆H@

44

			Notes			POST CHANGE &	RESTART VOL - 451.64/Curley		PORT CHANGE J.	RESTORET VOLUME - 464, 24/ Rus (AS)		PART CHANGEZ	PERTAPT VOI - 477.1.2/5(14.1.67)		PORT CHANGE I.	RESTART VOL-450, 06/508. 607	(4-1-1)	
	Auxillary	Temp	(F)	59	9	89)		30	22	70	17	1/2	71	22				
	Pump	Vacuum	(in Hg)	V	v	5	5	6	h	5	V	ا	V	W	5			
DGM	Outlet	Temp	(_P)	×	100	20	Co	83	82	CS	83	83	83	83	84	133 B	1	
DGM	Inlet	Temp	Œ)	\%	CS	63	24	18	\$	28	98	200	100	18	\% \%	384.00 1239.00	24.10	
Impinger	Outlet	Temp	(F)	၁	58	25	53	53	53	15	25	25	56	26	£5			
Filter	Temp	(⁰ F)	350	253	355	356	358	256	254	256	255	253	954	650	656			
Probe	Temp	(%F)	250	hSC	353	253	255	353	254	355	253	959	353	150	256			
	Stack	Temp	(°F)	296	296	297	296	297	29.3	296	29.7	297	296	296	297	00.344V	396.4D	
Gas Sample	Volume	Initial (F) [I]	438.84	16.174	445.44	451.57	454.59	458.50	464.16	467.53	47 (. 78	477.56	45,0,55	484.39	489.99	1(ce.p9)		\ \ !
Orifice	Setting	₽	(in H ₂ O)	lh.	۱ħ٠	15"	~p.	اب.	ر ا ا	77.	٦.	ָב בֿ	ーナ・	۱ħ.	177	(SIS)	11.	
Min/Point Velocity	DUELL Pressure	₽	(in H ₂ O)	-19	.30	3	818	,3(اه	.23	.37	29.	-19	.3E	165	9.1060	1609.	
Min/Point	DWELL	Elapsed	Time	8.45	19:30	32:45	44:15	55:15	71:15	30.45	92,45	104;00	年:七	128:0C	144:00 · Los	180.00 9.1060	1	
		Traverse	Point	1-1	B	Ł0	9-1	B	3	ئ ر	76	n	<u>-</u> -	9	લી	Total (Average	

Circle correct bracketed [] units
Train Type denotes impingers, knockouts, etc.

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Datasheet

TESTING TYPE: PARTICULATE SIZING

Page 2 of 3	Barometric (in. Hg) 39.5℃ Water (ml) (g) 9.5.8	Silica gel (g)	-13.6 Total Vic (09.8)	AES-10-4 Liner Type 766	-200 Nozzle Dia (in.) . 200	N/A	10-303-1 Train Type INAP	124.75 x6c Port Lath. (in.) 12.00		15:32 Stop Time 16:34	
ı	Barometric (in. I	Ambient Temp. (°F)	Static (in. H ₂ O)	Probe ID	Nozzle ID	Filter ID	Train ID	Duct Dim. (in.)		Start Time	
МЕТНОВ NO. 2018/202		•		7.00		_	(P) in pi	First point all the way (in) [out]	Gas flow [in] [obj] of page	Cross Section of Duct	
		I'w'		Project No. 니구역식			1.0034 Pitot Cp .84	Leak check	Milpmi@ (7 (inHg)	(cfm))(tpm] @ (inHg)	
RUN NO. 3	Client M.P.U.	Plant MANITOWOR, WI	Location Howell &	Date 00-19-14	Meter Operator 5.0.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1D PM-30 Ya	AH@ [.440 Kf	Pre Leak Check O.O.U. ([cfm] Jipm] @	Post Leak Check Cf	

			Notes												
	Auxiliary	Temp	(P)	23	23	22									
	Pump	Vacuum	(In Hg)	5	5	V									
DGM	Outlet	Temp	(°F)	78	18	₹									
DGM	Inlet		(P)		500	500									
Impinger		Temp	(°F)	47	SS	2									
Fifter	Temp	(⁰ F)	350	csc	150	5hC									i
Probe	Temp	(⁰ F)	250	050	283	150									
	Stack	Temp	(⁰ F)	950	96C	960									
Gas Sample	Volume	Initial [[5] [I]	(in H ₂ O) (in H ₂ O) 438.84	20-8PY	69.49h	503-06									
Ortfice	Setting	₩	(in H ₂ O)	١٨.	<u>.</u> 41	, d 1									
Min/Point Velocity Orifice	Dwell Pressure Setting	ΔP	(in H ₂ O)	م	.33	જુ									
Min/Point	DWCCC	Elapsed	Time	153:15	Sh':{9}	156 ist		,					1		
		Traverse Elapsed	Point	5-	O	2								Total	Average

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

Impinger Weights Datasheet

PROJECT	NO.	러	7	9	4	

Page	 ι	of	

Client	MPU	
Plant	MANITOWOC, WI	
Location	828	
Date	6/18/14 -6/19/14 Unit	B28
Operator	RK	

Run No.	1	7				
Method No.	201A/202	Train ID	18202-1	Filter No.	N/A	
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes	i
Impinger No. 1	EMPTY	538.3	6269	88.6	ADDED 327.2 ML BEGASSE	D WATER
Impinger No. 2	EMITY	638.6	643.1	4.5		Ť
Impinger No. 3	100 ML DI	602.0	623.2	21.0		7
Impinger No. 4	SILICA	943.4	965.7	22.3		7
Impinger No. 5						
Impinger No. 6						7
Impinger No. 7						7
Additional Rinse		· .				7
			Net Weight (g)	136.6		

Run No.	2	1				
Method No.	201A 1202	Train ID	18202-6	Filter No.	N/A	
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes	
Impinger No. 1	EMPTY	526.6	608.6	82.0	ADDED HO.2.5 ML DEBASSE	LU4
Impinger No. 2	EMPTY	636.3	641.6	5.3		
Impinger No. 3	100 ML DI	751.0	779.9	28.9		\neg
lmpinger No. 4	SILICA	832.0	857.3	25.3		7
Impinger No. 5						_
Impinger No. 6						_
Impinger No. 7						\neg
Additional Rinse			1			
			Net Weight (g)	141.5		

Run No.	3						
Method No.	201A/202	Train ID	18202-1	Filter No.	MIA	1	
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Note	es	
Impinger No. 1	EMPTY	539.6	611.0	71.4	ADSD 385.6	AL DEGASEA	LUA?
Impinger No. 2	EMPTY	G35.7	637.3	1.60			1
Impinger No. 3	JOOME DI	620.9	633.7	12.8			1
Impinger No. 4	SILICA	937.9	951.9	14.0			1
Impinger No. 5							1
Impinger No. 6							1
Impinger No. 7							1
Additional Rinse						-	1
			Net Welght (g)	99.9			•

Method 3B, Orsat Analyzer Datasheet

PROJECT N						F	Page (of /
Client	MP							
Plant	MAN	A WOTI	c, wt			F _o =	=(<u>20.9</u> -O ₂ %)	
Location	BUS		Date 6(,-19-14			CO2%	
Analyzer Type	OKS	17	Leak Check					
Run No.	Trial No.	%CO₂	%CO ₂ +%O ₂	%O ₂	Fo	Analyst	Date	Time
Ambient Air	Check							
Run No.	Trial No.	%CO ₂		%O ₂	Fo	Analyst	Date	Time
L	1	12.0	19.0	7.0		770	06-19-14	
	2	12.0	19.6	7.0		0		
	3	13 . 5	19.6	6.8				
	Average	19.1	19.0	6.9				
2	1	19.9	19.6	6.8		JD	06-9-14	
	2	12.0	18.8	656				
	3	12.8	19.0	6.6	_			
	Average	19.1	18.9	6.8				
3	1	12.4	19.6	6.6		JD	06-19-14	
1	2	12.5	19.0	Ce .4	_			
	3	19.4	19.0	(g) - (b) - (c) - (d) -				
	Average	12.3	19.0	6.7				
	1						<u> </u>	
	2							
	3				_			
	Average							
	1					L		
	2				_			
1	3							
	Average							
	1					<u> </u>		
ļ	2				_			
-	3				_			
	Average							
	11							
	2		_		_			
ļ	3				_			
	Average							
	1							
-	2				4			
-	3				4			
	Average			:	1			
	1							
-	2				4			
-	3				4			
L	Average							
otes: un an ambient	air chack to w	rify Oveer			Expected F _o Ra		N-4 5	4 000 4 000
easurements n		-			Anthracite/Light Bituminous	nite 1.015-1.130 1.083-1.23		1.600-1.836
			for each sample.		Distillate Oil	1.260-1.41		1.000-1.120
			t be greater than 0.2	2% overall	Residual Oil	1.210-1.37		1.043-1.177

Method 1, Sample and Velocity Traverses Datasheet

LOCATION BOILER 9 (M-2014/202)

		PUBLIC
Client	MANITO	WOC POWER UTILITY
Project No:	4794	
Plant	MANTO	WOC, WI
Date	06-17-	19
Technician	3.0).
Duct Dlameter	r (in.)	10%"
Port Diameter	(in.)	4"
Port Length (i	n.)	11.5
Port Type		M. FLANGE
Distance A (ft))	216"=18"
Distance B (ft)		356.4" = 29.7"
Distance A (D	uct Diameters)	2.0
Distance B (D	uct Diameters)	3.3

For rectangular ducts

$$ED = \frac{2LW}{(L+W)}$$

Edition Schematic and Notes		Traverse Point	Distance (in.)
ATT	A=63.6173	1	15.70
(MM)	H-03.6113	2	26.82
		3	42.92
		4	87.05
		5	103.18
\		6	114.30
		7	
	+++	8	
	GAS FLOW	9	
	GAS FLOW	10	
		11	
1		12	
		13	
		14	
	pes of disturbances, access, unistrut configuration, etc.	15	
Distance to point must include length of por		16	<u> </u>

AIRTECH ENVIRONMENTAL SERVICES INC. General Testing Datasheet

TESTING TYPE: AUTIC OLUFTE

METHOD NO. 301A / 303	Barometric (in. Ha)		Static (in. H ₂ O) , (O Total Vic	Probe ID AES-10-Co Liner Type	Nozzle ID . (75 Nozzle Dia (in.)	Filter ID N/A	Train ID Train Type		Gas flow [in] Qust of page	
		MANITOUDOC, WIT	509	-14 Project No. 니구에	K		Yd 1.000 of Pitot Cp . But	Kf N/A Leak check	O.OOC (cm)[ipm] @ (7 (inHg)	N/A Icfmi flom! @ N/A (linHa)

							,		180	000							
			Notes					SAL OF A PANCE	TOUT ONE OF SALES								
.00		Temp	(F)	03	70	2	2	מנ	74	pr	2	11	79	30	ည္က		
	Pump	Vacuum	(In Hg)	4	5	5	V	8	\s.	Ŋ	5	5	8	ľ	N		,
MĐQ	Outlet	Temp	(⁸ F)	87	83	ماه	a	9	99	101	10	601	(03	60	60	<u>رو</u>	
DGM	Inlet	Temp	(F)	28	-6	200	99	103	106	30	רסו	107	103	103	103	ree	1900
Impinger	Outlet	Temp	(°F)	54	55	53	57	5	53	28	3/2	53	52	50	S.		
Filter	Temp	Œ,	250	670	251	150	247	150	250	256	340	255	250	250	259		
Probe	Temp	(F)	250	258	259	pho	250	250	250	757	150	duco	250	350	८५७		
	Stack	Temp	(%F)	338	338	340	343	343	349	345	345	345	346	340	346	4119	243.25
Gas Sample	Volume	Initial [f ³] [l]	(in H20) 953.23	10.82%	9636	16.736	4J.4CP	980.13	984-30	993.96	999.37	1004.88	1010.49	10(6.16	1002.05	60.63	1.38
Orifice	Setting	H∇	(in H ₂ O)	500	.45	.45	.45	٥4،	, ५८	2	<u>ځ</u>	٠ لم	٠ <u>١</u>	146	34.	5.48	(1956)
Velocity	Pressure	ΔP	(in H ₂ O)	.55	.55	.60	.83	16.	١٥	29	ر	.73	.78	.83	.28	16:3521	Keng'
Min/Point Velocity	VAR AND Pressure	Elapsed	TIme	13	30gr8	39.45	5/0	73.30	9015	pd.(S	१८८ वर	133.30	148.30	Jr3.42	180	190	
		Traverse	Point	1-1	7	w	2	Ø	9	1-10	0	w	3	Ñ	و	Total (Average

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

General Testing Datasheet

TESTING TYPE: YART 1 COLLARTE

THE STATE OF THE S 175 1758 TWD ō Nozzłe Dia (in.) Port Lgth. (in.) Water (ml) (g) Silica gel (g) AE S-10-6 Liner Type IR 202-6 Train Type 1प्रवि Stop Time Total Vic Page 108" 29.15 5 N/A 01. Barometric (in. Hg) Ambient Temp. (°F) Static (In. H2O) Duct Dim. (in.) Start Time Nozzle ID Probe ID Train ID Fifter ID ece/ First point all the way [6] [out] Gas flow [in] [but] of page **Cross Section of Duct** 2014 METHOD NO. Carl Carl 30 (lnHg) (inHg) p64 Leak check 1, coal Pitot Cp N/A [cfm] [ipm] @ N/A <u>~</u> Project No. MANITOWOC WI @ [wd] [wg]] **₹/**2 9.0 P 71-61-0 ¥ 38 25 **B09** MOU טרר. Meter ID M-30 Post Leak Check Pre Leak Check Probe Operator Meter Operator RUN NO. Location Client Plant Date ØH∇

							2 2		12121212	100		(g)						
			Notes				CHE. AH TO .47 (2)		1200 CUG. 52 36-56 77 = 1 54			146 All To de 15						
COM	Auxillary	Temp	(F)	47	75	5	73	15			77	80	80	22	63			
	Pump	Vacuum	(In Hg)	6)	3	2	3	J	9	e	J	9	و	3	10			
DGM	Outlet	Тетр	(⁰ F)	8	9	69	00	Q	101	60	٥	9,5	6	89	300	1156	(را برق	
DGM	Inlet	Temp	(f)	9	(0)	105	90	5	[0	0	101	9.6	न्त	ğ	83	1200	9	
Impinger	Outlet	Temp	(°F)	20	9	2%	57	54	51	54	200	50	53	و.	56			
Filter	Temp	(°F)	250	250	250	150	258	150	253	254	251	125	251	250	256			
Probe	Temp	(⁰ F)	250	256	25¢	249	250	549	240	pse	256	phe	250	ose	250			
	Stack	Temp	(⁰ F)	345	348	348	347	342	343	339	339	339	338	338	-	eolh	341.33	
Gas Sample	Volume	Initial [f ²] [1]	22.74	62).10	32.49	37.53	43.62	युन नुष्ठ	56.72	63.45	16,89	74,50	80.05	85.87	91:75	10.69	-1.54 d	(b.1.2)
Orifice	Setting	H∀	(in H ₂ O)	. पट	46	, वि	14.	ر ا ،	٠ ط٦ ا	-47	را.	<i>9</i>)-	٠٩٥	٠46	140	155	(Sp.)-)
Min/Point Velocity	Agood Pressure	ΔP	(in H ₂ O)	.51	,54	63	185	.93	1.1	.67	.73	.77	600	18,	66.	6.583	(8 THU)	
Min/Point	VARIOUS	Elapsed	Time	13	20	39.30	55.30	2265	90	103.45	118.15	133.15	148.15	101	130	(30)	1	
		Traverse	Point	1-1	CA	n	3	5	و	2-1	a	3	3	Ŋ	9	Total	Average	
							B	Sich								_	-	

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

General Testing Datasheet

TESTING TYPE: ARATICULATE

Page 1 of 1	Barometric (in. Hg) 29. (5 Water (ml) (g) (14, 14	Ambient Temp. (PF) 17 Silica get (g) 15.2	Static (in. H ₂ O) , 1C Total Vic (29.6	Probe ID AE 5 40 - Colliner Type TEF.	Nozzle ID (in.) VITS Nozzle Dia (in.)	Filter ID N/A	Train ID 303-1 Train Type IND	Duct Dim. (in.) 108 " Port Lgth. (in.) 11"		Start Time 184 Stop Time 2149
METHOD NO. SOLA/302	Bar	Am	Sta	Pro)	File	Trail	First point all the way (a) [out]	Gas flow [in] Cout) of page	Cross Section of Duct Sta
RUN NO. 3	Client MPC	Plant NOW TOWOC, WIT	Location 2009	Date (G-17-(d Project No. 4794	Meter Operator (3/L	Probe Operator (1)	Meter ID N.30 Yd 1.0034 Pitot Cp . 34	AH@ Leak check /	Pre Leak Check O COO Complipm @ 1 (o (inHg)	Post Leak Check √(A [[cfm] [lpm] @ ~/(A [(inHg)

			Notes					3	20,121/125.83-12641 = 1,42									
200	A STATE OF THE PARTY OF THE PAR	Temp	(F)	89	29	200	70	70	r r	51	74	1.50	25	۲	25	i u		
	Pump	Vacuum	(in Hg)	لار	5	v	٧	V	7	ſΓ	ĵς	\V	1/2	٧.	S			
DGM	Outlet	Temp	(P)	75/	15	26	77	30	79	80	30	200	30	28	30	442	35)	
DGM	Inlet	Temp	(⁰ F)	75	30	83	78	85	85	84	72	87	36	9	100	8003	81.25	
Impinger	Outlet	Temp	(⁰ F)	27	25	C	58	56	5	58	55	54	55	و ئ	57			
Filter	Temp	(°F)	1980	251	250	250	150	asu	156	261	950	256	250	256	650			
Probe	Temp	(⁰ F)	250	256	253	256	350	250	ese	255	380	156	250	253	251		_	
	Stack	Temp	(³ F)	338	339	340	340	340	340	339	341	3વા	341	341	341	4031	340,08	
Gas Sample	Volume	Initial [f ²] [I]	92.00	96.63	101.29		112.08	118.01	124.41	130.45	136.24	161.71	147.37	11.651	159.15	67.15	J Ch1-	ET:39)
Orifice	Setting	₽	(in H ₂ O)	, 45	145	145	.पड	. cl5	id5	.45	沙	145	.45	.45	145	5.40	(4500)	
Min/Point Velocity	Pressure	ΔP	(in H ₂ O) (in H ₂ O)	.56	.56	50).	,85	10,	1.0	.65	41.	.79	, 84	186	196	16.55H	305/13/1950	
Min/Point	VARLOUS Pressure	Traverse Elapsed	Time	5p. 21	25.30	39.15	55	71.15	88.45	100.4S	117.15	132.15	147.45	163.30	120	130		
		Traverse	Point		u)	ന	7	Ŋ	و	2,0	4	10	73	5	3	Total	Average	

Circle correct bracketed [] units Train Type denotes impingers, knockouts, etc.

Impinger Weights Datasheet

					Page of
Client	MPU				
Plant	MANITOWOC, U	J1			
	B09				
	6/16/14 Un	it B09			
Operator	RK				
Run No.					<u> </u>
Method No.	201A/202	Train ID	1B202 - 1	Filter No.	N/A
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
Impinger No. 1	EMPTY	636.1	715.0	78.9	
mpinger No. 2	EMPTY	518.8	519.5	0.7	
Impinger No. 3	100ML DI	731.5	742.2	17.7	
Impinger No. 4	SILIC 4	824.7	846.0	21.3	
Impinger No. 5					
Impinger No. 6	111				
Impinger No. 7					
Additional Rinse					
			Net Weight (g)	118.6	
Run No.	2	_			
Method No.	2014/202	Train ID	18202-6	Filter No.	4.18
Hethod No.	SOLATROR		16,202 6	Title 140.	I ALA
	Contents	Tare with	Final (g)	Total (g)	Notes
		Contents (g)		87.7	ADDED 127.3 ML DECASSED I
mpinger No. 1	EMPTY	598.7	686.4 501.5	1.4	PIVYED IST. SPIL VEGASSED
mpinger No. 2	EMPTY	500.1		27.1	
mpinger No. 3	MOML'DI	736.0	763.1		+
mpinger No. 4	SILICA	976.6	999.1	22.5	
mpinger No. 5				-	
mpinger No. 6				 	
mpinger No. 7					
Additional Rinse				1116	
			Net Weight (g)	116.2	
Run No.	3				
Wethod No.	201A/202	Train ID	18202-1	Filter No.	NA
5 - 100 - 1	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
mpinger No. 1	EMPTY	637.8	728,5	90.7	
mpinger No. 2	EMPTY	520.1	520.2	0.1	
mpinger No. 3	100ML DI	754.1	777.7	23.6	
mpinger No. 4	SILICA	846.0	861.2	15.2	
	2	 	1	1 27.2	
		1	1		
mpinger No. 5			+		· ·

129.6

Net Weight (g)

Method 3B, Orsat Analyzer Datasheet

PROJECT N	o. <u>47</u>	94				P	age /	of
Client	M.P.	u.						•
Plant		TOWAL	1021			Fo≕	(20.9-O ₂ %)	
Location	ROG	Dat	06	-17-14		•	CO2%	
Analyzer Type	ORSA	Lea	k Check	7				
Run No.	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Fo	Analyst	Date	Time
Ambient Air	Check							
Run No.	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Fo	Analyst	Date	Time
	1	12.8	19.3	6.4		J.D.	06-17-14	15:30
	2	12.6	19.2	6.6				110 0-
Ī	3	12.6	19.2	6.4				
l	Average	12.7	19.2	6.5	7			
2	1	12.6	19.0	6.4		3,0.	06-17-14	11
	2	12.8	19.3	6.4				100
	3	12.6	19,0	6.4	7			
	Average	12-7	19.1	6.4	7			
3	1	12.6	19-7	6.6		J.D.	06-77-14	11-11-65
	2	12.6	19.2	4.6		<u> </u>		10.40
1	3	128	19.2	(0.4				
	Average	12.7	19.3	6.5	7			
Í	1	1	1 . 0					
	2							
ľ	3		<u> </u>		\dashv			
ı	Average							
	1	-						
	2							
ŀ	3				\dashv			
	Average							
	1							
	2							
ŀ	3				_			
	Average				\dashv			
	1				1 1			
	2				+			
	3				7			
H	Average				┪			
	1							
	2				1 7			
 	3				┪			
<u> </u>	Average				7			
	1							······································
	2							
-	3				┥			
-	Average				┥			
Notes:					 Expected F _o Ra	nges		
Run an ambient	air check to ve	erify Oxsorb.			Anthracite/Lign		Nat. Gas	1.600-1.836
deasurements r		-	.2%.		Bituminous	1.083-1.23		k 1.000-1.120
hree different t	rails should be	performed for	each sample.		Distillate Oil	1.260-1.41		
he differences	between the tr	ials must not b	e greater than 0.	2% overall.	Residual Oil	1.210-1.37) Garbage	1.043-1.177

Methods 201A/202 Gravimetric Analytical Report

Performed for MPU

Project No. 4784 July 1, 2014

Analyst:

James Christ

The following data has been reviewed for completeness, accuracy, adherence to method protocol and compliance with quality assurance guidelines.

Reviewer: Wasse

Date:

7/2/14

1371 BRUMMEL AVE, ELK GROVE VILLAGE, ILLINOIS 60007 - TEL: 630-860-4740 FAX: 847-258-3755

Table of Contents

PROJECT SUMMARY	2
General	2
Analytical Equipment	2
Sample Remarks	
QA/QC	2
Condition of Samples When Received	2
Table 1. Summary of EPA Methods 201A/202, Unit B09	3
Table 2. Summary of EPA Methods 201A/202, Unit B28	

APPENDIX

Data Entry Raw Data Chain of Custody Calibration Data

Project Summary

General

Project Information	
Date Received	6/24/14
Analytical Protocol	EPA Methods 201A/202
Number of Samples Received	36
Number of Blanks Received	16

Analytical Equipment

Equipment Information	Manufacturer	Model	Serial No.	
Analytical Balance	Ohaus	AV114C	8028031056	

Sample Remarks

All samples were analyzed according to the EPA Method 201A Section 11 and EPA Method 202 Section 11.

QA/QC

All sample weights were taken until two consecutive weights were within 0.0005g. The analytical balance was calibrated daily in addition to the yearly full scale calibration that was performed by Automated Scale Corporation. These calibrations can be found in the calibration section of the Appendix.

Condition of Samples When Received

Samples were received in good condition.

Table 1. Summary of EPA Methods 201A/202, Unit B09

	Run 1	Run 2	Run 3
<u>PM</u> >2.5			
Front-Half Particulate (g)*	0.0168	0.0176	0.0291
Filterable PM _{2,5}			
Filter (g)	0.0001	0.0000	0.0000
Front-Half Wash (g)*	0.0043	0.0062	0.0010
Front-Half Particulate (g)	0.0044	0.0062	0.0010
Condensible PM _{2.5}			
Back-Half Inorganic Fraction (g)	0.0497	0.1869	0.1885
Back-Half Organic Fraction (g)*	0.0040	0.0038	0.0041
Back-Half Particulate (g)	0.0517	0.1886	0.1905

Table 2. Summary of EPA Methods 201A/202, Unit B28

	Run 1	Run 2	Run 3
PM>2.5			
Front-Half Particulate (g)*	0.0207	0.0162	0.0212
Filterable PM _{2.5}			
Filter (g)	0.0001	0.0001	0.0000
Front-Half Wash (g)*	0.0003	0.0015	0.0044
Front-Half Particulate (g)	0.0004	0.0017	0.0044
Condensible PM _{2.5}			
Back-Half Inorganic Fraction (g)	0.3819	0.5282	0.1736
Back-Half Organic Fraction (g)*	0.0051	0.0129	0.0063
Back-Half Particulate (g)	0.3850	0.5411	0.1798

[&]quot;*" Results have been blank corrected

Appendix

Includes the following:

- Data Entry
- Raw Data
- Chain of Custody
- Calibration Data

Data Entry

Includes the following:

- Filter Data Entry
- Front-Half-Rinse Data Entry
- Organic Fraction Data Entry
- Inorganic Fraction Data Entry

EPA Method 201A/202 Parameters		Run 1	Run 2	Run 3	Blank
Filter	-	4912	4913	4914	
Filter tare weight (g)	Trial 1	0.7878	0.7883	0.7862	
	Trial 2	0.7879	0.7880	0.7865	
	Average	0.7879	0.7882	0.7864	
Filter final weight (g)	Trial 1	0.7879	0.7882	0.7863	
	Trial 2	0.7879	0.7881	0.7861	
	Average	0.7879	0.7882	0.7862	
Filter net weight, m _f (g)		0.0001	0.0000	0.0000	
PM<2.5 Front Haif Wash	Beaker ID	K1	K2	КЗ	405
Beaker tare weight (g)	Trial 1	4.2720	4.2242	4.2480	3.7357
	Trial 2	4.2722	4.2241	4.2480	3.7359
	Average	4.2721	4.2242	4.2480	3.7358
Beaker final weight (g)	Trial 1	4.2763	4.2301	4.2492	3.7354
	Trial 2	4.2765	4.2306	4.2488	3.7357
	Average	4.2764	4.2304	4.2490	3.7356
Volume of Wash, V _{aw} (ml)	•	39	28	22	200
Beaker net weight, m _a (g)		0.0043	0.0062	0.0010	0.0000
PM>2.5 Front Half Wash	Beaker ID	K5	K6	K7	405
Filter tare weight (g)	Trial 1	4.2826	4.2367	4.2360	3.7357
	Trial 2	4.2826	4.2363	4.2357	3.7359
	Average	4.2826	4.2365	4.2359	3.7358
Filter final weight (g)	Trial 1	4.2996	4.2542	4.2651	3.7354
	Trial 2	4.2992	4.2539	4.2647	3.7357
	Average	4.2994	4.2541	4.2649	3.7356
Volume of Wash, V _{aw} (ml)		51	45	60	200
Beaker net weight, ma (g)		0.0168	0.0176	0.0291	0.0000
			0.01.0	0.020	0.000
Back-Half Inorganic Fraction	Beaker ID	T1	T2	<i>T</i> 3	T4
Beaker tare weight (g)	Trial 1	4.2677	4.2628	4.2690	4.2479
	Trial 2	4.2676	4.2627	4.2690	4.2479
	Average	4.2677	4.2628	4.2690	4.2479
Beaker final weight (g)	Trial 1	4.3176	4.4498	4.4572	4.2500
	Trial 2	4.3171	4.4494	4.4577	4.2502
	Average	4.3174	4.4496	4.4575	4.2501
Volume of Wash, Vaw (ml)		287	510	293	177
Beaker net weight, ma (g)		0.0497	0.1869	0.1885	0.0022
Back-Half Organic Fraction	Beaker ID	<i>T</i> 5	T6	77	T8
Beaker tare weight (g)	Trial 1	4.2573	4.2488	4.2592	4.2782
	Trial 2	4.2574	4.2487	4.2591	4.2778
	Average	4.2574	4.2488	4.2592	4.2780
Beaker final weight (g)	Trial 1	4.2614	4.2525	4.2632	4.2800
	Trial 2	4.2613	4.2525	4.2632	4.2801
	Average	4.2614	4.2525	4.2632	4.2801
Volume of Wash, Vaw (ml)		385	282	343	247
Beaker net weight, ma (g)		0.0040	0.0038	0.0041	0.0020

EPA Method 201A/202 Parameters		Run 1	Run 2	Run 3	Blank
Filter		4915	4916	4917	
Filter tare weight (g)	Trial 1	0.7891	0.7879	0.7900	
	Trial 2	0.7887	0.7875	0.7900	
	Average	0.7889	0.7877	0.7900	
Filter final weight (g)	Trial 1	0.7890	0.7879	0.7900	
	Trial 2	0.7889	0.7878	0.7897	
	Average	0.7890	0.7879	0.7899	
Filter net weight, m _f (g)		0.0001	0.0001	0.0000	
PM<2.5 Front Half Wash	Beaker ID	М1	M2	М3	405
Beaker tare weight (g)	Trial 1	4.2477	4.2617	4.2086	3.7357
	Trial 2	4.2473	4.2614	4.2087	3.7359
	Average	4.2475	4.2616	4.2087	3.7358
Beaker final weight (g)	Trial 1	4.2477	4.2632	4.2131	3.7354
·	Trial 2	4.2480	4.2630	4.2130	3.7357
	Average	4.2479	4.2631	4.2131	3.7356
Volume of Wash, V _{aw} (ml)		38	16	15	200
Beaker net weight, m _a (g)		0.0003	0.0015	0.0044	0.0000
			0.00.0	010044	0.0000
PM>2.5 Front Half Wash	Beaker ID	M5	M6	M7	405
Filter tare weight (g)	Trial 1	4.2137	4.2211	4.2214	3.7357
	Trial 2	4.2133	4.2209	4.2211	3.7359
	Average	4.2135	4.2210	4.2213	3.7358
Filter final weight (g)	Trial 1	4.2345	4.2375	4.2423	3.7354
	Trial 2	4.2340	4.2370	4.2425	3.7357
	Average	4.2343	4.2373	4.2424	3.7356
Volume of Wash, V _{aw} (ml)		55	64	62	200
Beaker net weight, m _a (g)		0.0207	0.0162	0.0212	0.0000
Back-Half Inorganic Fraction	Beaker ID	S1	\$2	S 3	S4
Beaker tare weight (g)	Trial 1	4.2498	4.2592	4.2600	4.2558
	Trial 2	4.2502	4.2595	4.2605	4.2559
	Average	4.2500	4.2594	4.2603	4.2559
Beaker final weight (g)	Trial 1	4.6317	4.7877	4.4337	4.2578
	Trial 2	4.6320	4.7874	4.4339	4.2579
	Average	4.6319	4.7876	4.4338	4.2579
Volume of Wash, Vaw (ml)		638	665	631	175
Beaker net weight, ma (g)		0.3819	0.5282	0.1736	0.0020
Back-Half Organic Fraction	Beaker ID	S5	S6	S 7	S8
Beaker tare weight (g)	Trial 1	4.2474	4.2113	4.2377	4.2419
•	Trial 2	4.2478	4.2116	4.2380	4.2417
	Average	4.2476	4.2115	4.2379	4.2418
Beaker final weight (g)	Trial 1	4.2528	4.2241	4.2440	4.2430
-	Trial 2	4.2527	4.2245	4.2443	4.2426
	Average	4.2528	4.2243	4.2442	4.2428
Volume of Wash, Vaw (ml)	0.	345	251	331	245
Beaker net weight, ma (g)		0.0051	0.0129	0.0063	0.0010

Raw	Data
-----	------

Includes the following:

- Filter Gravimetric Data Sheets
- Beaker Gravimetric Data Sheets

Filter Gravimetric Datasheet

Run N	o. Project #/L	7.4	Weight	Date / Time	e Weight	Date / Time	Weight	Date / Time	e Go
		Та	0.1077	5/15 10:0	0.7857	5/16 10:5	0 0.7856		
		Ter	ch Common	RK		RK	0.1836	2/17 4.3 RK	5 1
Filter II	D	Fin	al					ICK	
4909	7	Tec	:h	3-0					+
Run No		Not							127
Team No.	/ Project #/Lo	2	Weight	Date / Time		Date / Time	Weight	Date / Time	Goo
		Tar	0.18.10		90.7855	5/16 8:49	0.7856	5/17 9:3	
Filter ID		Tec		RK		RK		RK	Ø V
1 11101 12	10	Fina							
4910		Tec					Harak Evil		100
Run No.	Project #/Lo	Note	Weight	Deta (Tit					
		Tan		Date / Time	Weight	Date / Time	Weight	Date / Time	Good
		Tecl	0.1012		0.7869	5/16 8:43	3		1
Filter ID		Fina		RK		RK			- 172
4911		Tech Note:					ETTA E		0.00
Run No.	Project #/Loc		Weight	Date / Time	M/c2-b4				
1	64	Tare			Weight	Date / Time	Weight	Date / Time	Good
	4744	Tech		5/15 9:57	0.7879	5/16 8:42			/
Fifter ID	1309	Final	0.7879			RK	13022-5110		125
110	7	Tech		6306:59	0.7879	7/1 7:13			-
1912		Notes				(2,30		
Run No.	Project #/Loc		Weight	Date / Time	Weight	Date (Time			
2	4744	Tare	0.7883	5/15 9:50		Date / Time	Weight	Date / Time	Good
		Tech	1303	RK-	0.1660	5/16 8:41			/
Filter ID	BO	Final	0. 7882	6/306:58	0.7881	RK	DESCRIPTION OF		
0 0	1	Tech	A CONTRACTOR	7 30 5:30	0.7551	71:17			-
913		Notes							
Run No.	Project #/Loca	ation	Weight	Date / Time	Weight	Date / Time	Weight	D-4- (7)	
3	474	Tare	0.7862	5/15 9:56	0.7865		Aveignt	Date / Time	Good
_		Tech		RK	1003	5/16 8:40			1
ilter ID	1301	Final	0.7863	6/30 6:58	0.7861	7(17:14			
914		Tech	N 44 1 24		0.7101			ļ	100
		Notes							
	Project #/Loca		Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Good
1	4794	Tare	0.7891	5/15 9:54	0.78887	5/15 15:54		- Sator Finds	-
114	BZE	Tech		RK	0.7887	RK			-
ilter ID		Final	0.7890	0/30/6:54	0.7889	7/1 7:11			
915		Tech		1					
	Project #/Local	Notes							
		1	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Good
2	4794	Tare	0.7872	5/15 9:53	0.7879	5/15 15:53	0.7875	5/16 11:00	7
iter ID	1328	7.50		RIC		RK		RK	
101 101		Final	0.7875	6/306:57	3 .7878	7 17 112			V
116		Tech			DESCRIPTION OF THE PERSON OF T	1			
	Project #/Locat	Notes	Weight	Defe (W					
	- 1			Date / Time	Weight	Date / Time	Weight	Date / Time	Good
3	4794	Tech	0.7911	5/15 9:52	0.7900	5/15 15:520	.7900	5/16 11:01	1
ter ID	B28		0.7900	RK		RK		RK	
	-2	Tech	V · / 708	4 306:56	J.7897	7/17:13			
17		1.000		,					

Project No	4784		Date R	ecelved			Pag	e	of	
Client	MPU		Plant							
Run No.	Location/Volume	la len en		Mr. t. r.e			1 - 4 - 4 - 4 - 4	1 201 4 201		
Kull No.					Date / Time	Weight	Date / Time	Weight	Date / Time	G
)	809	201A		4.272		4.2722	120 10:35			
-		PMS	Tech	nt a	BHL	Desperation	13N2	Carrier Service		-
Beaker ID	28.8+10	2.5	Final	4.2770	6/2714:02	4.2763	6/30 6:55	42765	6/30 1431	
KI	38.8 mls	ACE	Tech		201	Legacia em	1		(
Run No.	Location/Volume		Notes	Walnes	Partie I Time	301-1-10				To
Ruil No.				Weight	Date / Time	Weight	Date / Time	Welght	Date / Time	G
2	Bog	2014 PMS	Tare	4.2247		4.2241	120 10:36			1
HSASS-C		2.5	Tech	11 02 00	BHZ	DALONE DE D	BH2	15 0 10	16 1101	+
Beaker ID	18.3+10		Final	4.2309	6/27/41:04	4.23981	6/30 6:53	4.2306	6/30 1431	4
K2	26.3 mls	ACE	Tech		176	10				1
Run No.	Location/Volume		Notes	Weight	Date / Time	Moteria	Date / Time	100-15-1-2	D-4-17	G
		201A	Tare	4.2480	fo.	Weight 4.2480	Date / Time	Weight	Date / Time	-
3	Bog		Tech	7.2700	719 12:36	1.2760	1/20 10:36			4
Beaker ID		PM = 2.5	Final	1. Oller		4.2488	BAL			-
	12+10			4.2492	6/27/4:03	4.2408	6/30 6:54			1
K3	22 mls	ACE	Tech Notes			SE SERVICES			1	è
Run No.	Location/Volume	Method/		Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
	B09	PMS	Tare	4.262		4.26/8		weight	Date / Tillia	_
FB	1009	2.5	Tech	1.202	BH2-	1. 46/0	9/20 10:37 BH2	14.41		1
Beaker ID	17.1+10	~.2	Final	4.2626		11 21.25	6/30 6:52			1
	14.7 770	ACE	Tech	7.2624	6/27/4:05	7.2023	0/30 6.32			+
K4	22.1 mls	TICE	Notes						Ž9	
Run No.	Location/Volume	Method/		Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
	B09	200	Tare	4.2824	0 6/19 12:37	4.2826	9/20 10:37			1
Į.		- "	Tech		BH2	1.2026	BHL			+
Beaker ID	28+10	A	Final	4.2996		4.2992	6/36:52			1
1		ACE	Tech	1.21/0	0/21/1.07	1,010	0/30-12	INTEREST		+
KS	38 51 mls	7100	Notes							
Run No.	Location/Volume	Method/	Reagent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
^	Bog	202	Tare	4.236	7 6/19 12:38	4.2363	6/20 10:38			٦,
2	201	A	Tech	= 2-5	Bhi	THE RESERVE OF THE PERSON NAMED IN	BHZ			100
Beaker ID	35.3 +10	/-	Final	4.2542	6/27/4:03	4.2539	6/306:51			T
K6		ACE	Tech		lolo(1 No)	District Co.	1			
	45.3 mls		Notes							_
Run No.	Location/Volume		Reagent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
2	B09	SOI _A	Tare	4.2360	9/19 12:39	4.2357	12010:38			V
3		4	Tech	Mars Free	BHZ	E HEVES	BH2	D2E EUN		
Beaker ID	50+10		Final	4.2651	6/2714:02	4.2647	4/20 6:54			4
K7		ACE	Tech			nui Eleve	1	10/14/2		1
	60 mls		Notes							
Run No.	Location/Volume	Method/ (Reagent	Weight	Date / Time	Welght	Date / Time	Weight	Date / Time	G
E0	B09	201	Tare	4.2175		4.2171	1/20 10:39			ν
FB		A	Tech	1.16	BNZ		BH2-			I
Beaker ID	58.1 +10		Final	42183	6/27 14:01	4.2179	6/306:53			-
K8		ACE	Tech		ſ		1			T
VO	68.1 mls		Notes							_

Project No.			Date Re	celved		ł	Pag		of	
Client	MPU		Plant			J				
Run No.	Location/Volume	Method/	Reagent		Date / Time	Weight	Date / Time	Weight	Date / Time	G
	1309	202	Tare	4.2677	1/19 12-30	4.2676	1/20 10:39			Į,
1	10-1	TI	Tech		BH2_		BH2	RELEGIO		IJ
Beaker ID		-	Final	4.3176	6/307105	4.3171	6/8014:39			2
17	2 5 7		Tech		1		/	Mell E M		10
1 1	287 _{mls}		Notes	ड्यप						
Run No.	Location/Volume	Method/	Reagent	Welght	Date / Time	Weight	Date / Time	Weight	Date / Time	G
2	B09	202	Tare	4.2628	9/19 1231	4.2627	10:40			٧
			Tech	IINEE A SECOND	BH2		BHZ		,	1
Beaker ID		DI	Final	4.4585	6/307:04	4.4498	6/3014:40	4.4494	7/16:45	1
T2	CIO		Tech		1		/		(
	510 mls		Notes	201						lo.
Run No.	Location/Volume	Method/		Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
3	B09	102	Tare	4.2690	6/19 12:31	4.2690	12010:40			6
	,	_	Tech		BH2	15-	DM2-		1	+
Seaker ID		DI	Final	4.4623	4/307:07	4.4572	6/3014.38	4.4577	7/16:46	1
T3	062		Tech		(DEUL	1	
	293 mls		Notes	15%		100.1.1.	D 44 (77)	101-Y-1-14	Date / Time	T _G
	Location/Volume	method			Date / Time	Weight	Date / Time	Weight	Date / Hite	-
FB	Bog	102	Tare	4.2479	6/19/2:32	4.2479	1/20 10:41			0
	,	N	Tech	0.6	BH2_	44.0	BHZ		-	t
Beaker ID		Q.	Final	4.2500	6/307:01	4.2502	6/30 14:38			+
T4	177 mls		Tech	15	/	BLIE OF	<i></i>			
Run No.	Location/Volume	Method	Notes	(50 Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
1	309		Tare	4.2573	6/19 12:32	4.2574	6/20 10:42	TTOIGHT		1
	130-1	202	Tech	7. 2515	119 12.52 BH2	1.23 77	Bh2-	. 534		۲
Beaker ID		174	Final			4.2613	6/301440			1
Dearer ID			-3-74	4.2614	6/30 18725	7.2015	6/3011-40			Ŧ.
TS	385 mls		Tech	241272	-			* .		
Run No.	Location/Volume	Method/	Notes Respent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
	609		Tare	4.2488	6/19 12:33	4.2487	6/20 10:42			1
2	120-1	201	Tech	7.2 700	BH2-	1.2101	BHZ			+
Beaker ID		202	Final	4.2525		4.2525	6/30 14:4/			6
		111	Tech	-1,232 0	6/307:00	7.2525	0/30/11/			+
Tb	282 mls		Notes							_
Run No.	Location/Volume	Method/		Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
-2			Tare	4.2592	1/19 12:34	4.2591	6/20 10:43			T
3	1509	202	Tech		BH2	JELET JE	BHZ	V		1
Beaker ID		ila	Final	4.2632	6 307:04	4.2632	6/3014:39			L
		N. C.	Tech		1		1			+
77	343 mls		Notes		, , ,				-	-
Run No.	Location/Volume	Method/		Weight	Date / Time	Weight	Date / Time	Welght	Date / Time	G
Ca	1509	282	Tare	4.2782	6/19 12:34	4.2778	6/20 10:43			V
FB	V-		Tech		BH2_		BHL			Í
Beaker ID		Het	Final	4. 2800	6 307:06	4.2801	6/30/4:4/			Т
T8	241 mls		Tech		1		/			\dagger
	1 / 2 / 1/4	1	1	T .	1					_

Project No			Date Re	eceived	6/2	1//4	J	Pag	9	of	
Client	MOU		Plant	DCG0	May	Horan	j				
Run No.	Location/Volume	Method/	Reagent	We	lght	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
		BOIA	Tare	4.24		6/19 12:41	4.2473	10:30			V
}	B28	/ "	Tech	14 1	-	BH2-	1-4173	Bn2	EQ. (See al.)		-
Beaker ID	28.2+10	2.5	Final	4.24	Cv/ .	6/27 14:01	4.2477	6/306:50	4.2480	0/30/4/32	2
				7.29	10	6/2/14:0/	7.27//	0/300,30	1.2.1	17301100	100
MI	38.2 mls	ACE	Tech Notes							1	
Run No.	Location/Volume	Method/		Wel	ight	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
		ADIA	Tare	4.26		9/19 12:41	4.2614	6/20 10:31			
2	B28	PM4	Tech	10	1 7	8H2	1.761	BH2			-
Beaker ID	6+10	2.5	Final	11.21	7.0	4/27 14:00	4.2630				1
				4.26	52	921 14-00	7.200	4/21649			-
M2	16 mls	ACE	Tech	2.1	100		HAVALINE ST	30 /			
Run No.	Location/Volume	Method/	Notes	Wel	ight	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
			Таге	4.20		6/19 12:42	4.2087	1/20 10:32	VI-Juni		1
3	B28	201A	Tech	1.20	00	114 12:42 B4L	7.2081				-
Beaker ID	e	PMS	Final	401	2.1	1	11.4.20	6/30 6:90			~
	5+10	2.5		4.213	>/	6/27 13:59	4.2130	0/30 6-30			-
M3	15 mls	ACE	Tech	1000	-11-3				I'm enevel	<u></u>	
Run No.	Location/Volume	-	Notes	Wel	inihit	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
11011110.			Tare	4.1		17-			- Crossins	1 200	V
FB	828	201A	Tech	4.21	36	119 12:43 BH2	4.2153	6/20 10:32		1	-
	1.	PML		41	4.43			BH2		1	L
Beaker ID	021+10	2.5	Final	4.211	63	6/27 13:58	4.2163	6/30 6:50			L
MY	32 mls	ACE	Tech					' /			
Run No.			Notes	Wel	obt	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
110111101			Tare	4.21		9/19/243	4.2133	6/20 10:33	eroigin.	34,07711110	
T.	B28	BOIA	Tech	1.2) T	BHL	1.2133	BH2			2000
Beaker ID	1		23.50		200		11 0240			-	V
Deares ID	45.3+10	ACE	Final	4.23	75	6/27 13:58	4,250	6/306:45			-
M5	55.3	TILE	Tech	11.150			1-6	/			
Run No.	55.3 mls	Mathodi	Notes	Wei	orbe	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
1,001			Tare	4.22		-	42209		1100311	7,107,71110	
2	Bas	201A		7. 2.	-11	6/19 12:44 BHZ	7.2201	1/20 10:33			V
			Tech				4. 00000	BHZ	12.42.47.2.2.2.2.2.2	-	2
Beaker ID	53.5+10		Final	4.23	75	6/2713:57	9.2370	6/306:50			100
Mb	COE.	ACE	Tech	2188		,		· /			1
Run No.	63.5 mls	Mathad/	Notes	Wei	aht	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
140.				4.22			4.2211	1/20 10:34	traight.	Date 1 Hind	1
3	B28	201A	Tare	7.22	17	6/19 12:44	1-4411	. ,	V		-
	52.1 +10		Tech	41.0	10	BHZ	45 01 00	BHZ-		1. 12. 14/20	-
Beaker ID	John Till	ACE	Final	4.24	9	6/2713:59	4.2423	6/306:48	4.2425	6/30/4:32	+
M7	62.1 mls	-	Tech			/		/	(C) (C) (C)		,
	Location/Volume	Mathadi	Notes	Wel	aht	Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
Run No					-			6/20 10:34	44918116	- Sate / Ittle	1
Run No.	0.00	1 60 . 4	Tare	4.23	7	9/19 12:45	4.2336			+	1
	828	SOIA	Track.			Marie Land					
FB		DOIA	Tech	11021	1.1	BHL	10000	BH2		+	0.
	60+10	ACE	Tech Final	4,234	14		4,2340	6 206:48			V

Project No.			Date Re	ceived		_	Pag	e	of	
lient	MPU		Plant			_				
Run No.	Location/Volume	Method/	Reagent	Weigh	t Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
1	B26		Tare	4.249			1/20 10:49			1
	520	202	Tech		BH2	7-2302	BH2		1	3
Beaker ID		~	Final	4.6317	0/307:03	4.63 20	6/30/4:35			-
		红	Tech	7. 451 /	0/30 1.00		0/301-45			1.5
51	638 mls		Notes	151		Hart Joseph Co.	7			
Run No.	Location/Volume	Method/		Weigh	t Date / Time	Weight	Date / Time	Weight	Date / Time	Goo
	62%	292	Tare	4,259	2 9/19/2:2	54.2595	1/20 10:50			1
2	020	202	Tech		BHZ		BHL			
Beaker ID		江	Final	4.7890	6/30 7:03	4.7877	6/3014:36	4,7874	7/16:45	V
00			Tech				1	LENSU	,	
S2	665 mls		Notes	147						
Run No.	Location/Volume	Method/	Reagent	Weigh			Date / Time	Weight	Date / Time	Goo
7	328		Tare	4.260	0 919 12:2	6 4.2605	120 10:51			/
3	DZO	202	Tech		BH2	NETSENII.	BHZ			17.
Beaker ID		DE	Finai	4.4346	6/10 7:02	4.4337	\$7/16:44	4.4339	7/114:17	4
62	4.51		Tech		ſ		/	(2) 1	1	
53	631 mls		Notes	पप			and the same of th			
Run No.	Location/Volume	Method/	Reagent	Welgh			Date / Time	Weight	Date / Time	God
AGA	B28	202	Tare	4.255	8 /19 12:2	74.2559	6/20 10:52			V
Z (D		P±	Tech		BHZ		BH2-		_	3.
Beaker ID		PL	Final	4.257	8 6/307:0	7 4.2579	6/3014:35			2
SH	100		Tech		1		1			
	175 mls		Notes	143				200 50 000	Description	God
.kun No.	Location/Volume	Method/		Weigh	E .	1 1	Date / Time	Weight	Date / Time	GU
1	1328	202	Tare	4.247		3 4.2478	1/20 10:52			V
	150	118	Tech	1.0	BH2-	4.00-4-	BHL	1000	1	-
Beaker ID		114	Final	4.248		8 4.2528	6/3014:34	4.2527	7/16:44	-
S5	216		Tech	54	c f	EN TERM	1	The STE		
	317 mls	B# - 42	Notes	1AV-L-L	t Date / Time	Weight	Date / Time	Weight	Date / Time	Go
Run No.	Location/Volume	Mediodi		1	- 2		6/20 10:53	truig.re		V
2	B28	102	Tare	4.211	3 9/19 12:2 BH2		BH2	Constitution of the	80	-
	1		Tech				1			L
Beaker ID		Hek	Final	4.224	1 6/307:01	9.2243	6/3014:34	Ca rancera		10.7
56	251 mis		Tech	1215			/			11.5
Run No.	Location/Volum	e Method/	Respent	Weigh	t Date / Time	Weight	Date / Time	Weight	Date / Time	Go
,			Tare	4.237	- 3		6/20 10:53			1
3	1520	202	Tech	1.201	BHZ	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BHL	Vanile of		1
Beaker ID	1 ''	LLX	Final	4.244		4.2443	4/3014:36			2
	-	Hex	Tech	7.27	6/2	1.2113	1			
51	331 mls		Notes		/					
Run No.	Location/Volum	e Method/		Weigh	nt Date / Time	Weight	Date / Time	Weight	Date / Time	Go
C1	626		Tare	4.241	9 6/19/2:2	94.2417	1/20 10:54			V
PB	Dog	202	Tech		BHL		BHZ			
Beaker ID]	Het	Final	4.243		1 4.2426	6/3014:37			-
	145 mis	her	Tech		1					
58										

Project No		_	Date Re	Celved		-	Page		of	
Client	MPU		Plant			J				
Run No.	Location/Volume	Method/	Reagent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	G
			Tare	3.7357	1.112 24:05	7.7359	6/138:45			L
RB		Į l	Tech	7	6/1224:05	31 7531	RE			8
Beaker ID			Final	2 2001	6/1622:41	2 7167				1
Deaker ID				3.7354	6/162201	3.7357	6/175:47			+
405	700		Tech	ETFICKE T		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			
Run No.	200 mis	Bilashadi	Notes	Motorial	Date / Time	Wolele	Date / Time	18f-Jorles	Date / Time	Go
Run Ro.	Location/Volume	Method		Weight	Date / Time	Weight	Date / Time	Weight	Date / Hime	150
			Tare							+
			Tech	I a service		EMOSSES CON				+
Beaker ID			Final							
			Tech	THE NE		In other				
	mls		Notes							_
Run No.	Location/Volume	Method/	Reagent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Go
			Tare							
			Tech							
Beaker ID			Final							
			Tech			FEMALE IN		END HILL SEE		+
	mls		Notes				.1			1
Run No.	Location/Volume	Method/		Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Go
			Tare							Т
			Tech							10
Beaker ID									· -	1
Dearel ID			Final				-			+
			Tech					E11/23/56	_	
Run No.	mis Location/Volume	Bankbinist :	Notes	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Go
Kuit No.	Location voiding	Mietrioo		TTEIGHT	Date / Time	. veaigin.	Date /) Hilly	4461Girt	Date / Title	100
			Tare							+
			Tech			COLOR II III				+
Beaker ID			Final]			
			Tech			The salings		MKS= NIX		
	mls		Notes							
Run No.	Location/Volume	Method/	Reagent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Go
			Tare							
			Tech		Ž .	THE THE				
Beaker ID			Final							
			Tech	METALE		VIII.S SILIT		EXCIVIO ELLO		1
	mis		Notes							_
Run No.	Location/Volume	Method/	Reagent	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Go
			Tare							Т
			Tech	DISER N		- 1000	 	V III		10
Beaker ID	1		Final							T
							_			+
	mls		Tech	III A				84/2.1		
Run No.	Location/Volume	Method/	Notes	Weight	Date / Time	Weight	Date / Time	Weight	Date / Time	Go
			Tare	11018111	2407 1 11110		200711110	TO BIT		1
			1.0				1			+-
			Tech		-		-		-	+
Beaker ID	1		Final							\perp
			Tech							
	mls	1	Notes							

Chain of Custody

Includes the following:

Chain of Custody

No. 5118

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

Date Date Sample Completed By Completed By CATCA	Project Number	H854		Location	- 22	Bog	_	Analysis Requested	Page	jo	જ
DNG PANÍTOUCC,	Cllent	MPI	,		ى	41/08					
	Plant	MANI	Towoc, h								
	Comments:					-	908/¥1Q S-Y				
	ID No.	Run No.	Date		Sample Des	cription	7			Notes	
		1 6	h1/t1/9	S		U)	×				
		1	1/4/	DI + 12	S		X			•	
		7 !	1141	I	EX RINSE		X				
2) 1	41/t1/9	3	FILTER		×				
2		1	カバキバラ	V	2.5 ACE	RINSE	×				
2 6/12/14			P//+1/0	V	DONE RINSI	361	×				
2 6/17/14 ACE + HEX RINSE 2 6/17/14 CPM FILTER 3 6/17/14 F'A ACE RINSE 3 6/17/14 F'A ACETONE RINSE 3 6/17/14 ACE + HEX RINSE 5 6/17/14 PH & CPM FILTER 6 6/17/14 PH & CPM FILTER 8 6/17/14 PH & CPM FILTER 8 6/17/14 PH & CPM FILTER 8 6/17/14 FILA ACETONE RINSE 8 6/17/14 FILA ACETONE RINSE 8 6/17/14 Rives (signature) 8 CAPA / Manuel (signature) 8			3/17/14	+	P CATCH		×				
2 6/12/14 PM S. ACE RINSE 3 6/12/14 F/2 ACETONE RINSE 3 6/12/14 F/2 ACETONE RINSE 3 6/12/14 ACET HEX RINSE 3 6/12/14 ACET HEX RINSE 3 6/12/14 ACET HEX RINSE 5 6/12/14 CPM FILTER 5 6/12/14 PM S. S ACE RINSE 6 6/12/14 RINSE 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			17	4	Ex RINSE	g så år	×				
2 6/12/14 PM 2 2,5 ACE RINSE 3 6/12/14 F/2 ACETONE RINSE 3 6/12/14 ACE + HEX RINSE 3 6/12/14 ACE + HEX RINSE 3 6/12/14 ACE + HEX RINSE 5 6/12/14 PM 22,5 ACE RINSE 6 6/12/14 PM 22,5 ACE RINSE 8 6/12/14 PM 22,5 ACE RINSE 8 6/12/14 Ringuished By 8 6/12/14 Ringuished By 8 6/12/14 Rings 8		_	117	U	A FILTER	3	X				
3 G/12/14 F1/2 AETANE RIUSE 3 G/12/14 AE + HEX RIASE 3 G/12/14 AE + HEX RIASE 3 G/12/14 CPM FILTER 4 G/12/14 PM & 20.5 AE RIASE 5 G/13/14 PM & 20.5 AE RIASE 5 G/13/14 PM & 20.5 AE RIASE 6 G/13/14 Reinquished By 6 G/20/14 KLCS (ginature) 7 KLEY KLCS (ginature) 6 G/20/14 KLCS (ginature) 7 KLEY KLCS (ginature)			6/17/14	PM &	נט	RINSE	×				
3 (6/12/14)			H/2//0	1	CETONE R	INSE	×				
3 (6/12/14 ACE + HEX RINSE X 3 (6/12/14 PM < 20.5 ACE RINSE X 5 (6/13/14 PM < 20.5 ACE RINSE X 6 (13/14 Relinquished By Relinquished By Relinquished By Relinquished By Relinquished By Respect By Res			_	7	MP CATE	.	X				
3 (6/13/14) CDM Ell.TER 3 (6/13-/14) PM.S.D. 5 ACE QLASE EB (6/13-/14) F1/2 ACETONE RINSE COLOCI Klocs (signature) COLOCI Klocs (printed) COLOCI (printed)			P1/41/0	ACE	+ HEX RIA	KE	×				
3			-	U	PM FILTER		X				
ed By Collection Elia AETONE RINSE X			H1/+1/9	PM:	52.5 ACE 1	ZINSE	×				
ed By MM (signature) RILEY KLOSS (printed) CICOLIH KCHS (printed)			M/F1/0	F1/12.	ACETONE	RINSE	×				
(Signature)	Relinquished By	(10		Relinquished By			Carrier			
CALEY KLOSS (printed) CASO/14 Ki45 Date/Time 3y Accepted By (signature) (signature) Ruesy KLOSS (printed) GA24/14 14(65) Date/Time Date/Time	(signature)	1	MA	7	(signature)			Laboratory			
G/20/14	(printed)		CRILEY	55077	(printed)			Contact			
3y	Date/Time	6/30	•	45	Date/Time			Address			
	Accepted By	6	" "		Accepted By						
CARA/LA 14:05 (printed) CARA/LA 14:05 Date/Time	(signature)	1/2	Miller		(signature)			Phone			
CA24/14 141.65 Date/Time	(printed)	7	RILEY		(printed)			Fax			
	Date/Time	6/24/14			Date/Time			Date/Time			

Airtech Environmental Services Inc. 1371 Brummel Ave Elk Grove Village, IL 60007 Phone: (630) 860-4740 • Fax: (847) 258-3755

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

oi Z

Project Number	おおされ	Location RO9	Analysis Requested	Page 2 of 2
Client	APU	114		
Plant	MANITOWOC. W	Completed By RILEY KLOSS		
Comments:			८०८/ <i>२</i> १०१	
ID No.	Run No. Date	Sample Description	9	Notes
	FB 6/12/14	Di + IMP CATCH	×	
	FB 6/17/14	ACE + HEX RINSE	×	
	19	COM FILTER		
		52.5	*	
		Di 104 2		
	0/8	20		
		AKETONE 1 OF 2		
	RB 6/19/14	ACETONE 2 OF 2		
	RB 6/19/14	EXANE		
	1 6/14/14		×	,
	2 6/17/14	٦		
	ی	GELMAN FILTER		
Kelinquished By	0):0	Kelinquished By	Carrier	
(signature)	ary war		Laboratory	
(printed)	- RILEY KI	(printed)	Contact	
Date/Time	6/20/14 16:45	S Date/Time	Address	
Accepted By		Accepted By		
(signature)	CHICK ALL	(signature)	Phone	
(printed)	_ 1	(printed)	Fax	
Date/Time	G/24/14 14:05	Date/Time	Date/Time	

Airtech Environmental Services Inc. 601A Courtry Club Drive Bansanville, IL 60106 Phone: (630) 860-4740, Fex. (630) 860 4745

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

oi Z

Project Number	4344	Location		828	Ans	Analysis Requested	Page 3 of 6
Client	MPU	Date	<i>(6/</i>	6/20/14			
Plant	MANITOWOC, (い。 Completed By		RILEY KLOSS	7		
Comments:	•				·66/		
					410°C		
ID No.	Run No. Date		Sample Description	ription	э Т		Notes
	1 6/14/14	F'/2	ACETONE	RINSE	×		
	1 6/19/14	D	+IMP CA	ATCH	×		
	1 6/19/14	4C	E + HEX	RINSE	メ		
	1 6/19/14		CPM FILT	EK	X		
	1 G/19/14		PM 52.5 A	2.5 ACE RINSE	×		
	C/19/14	F1/2 A	ACETONE R	RINSE	×		
	2 6/19/14	1	7	ATCH	×		
	H1/61/9 C	A	_	RINSE	X		
	2 6/19/14		CPM FIL	FICTER	×		
	2 6/19/14		PM 42.5	PM = 2,5 ACE RINSE	×		
	3 6119/14	4	FV2 ACET	ACETONE RINSE	<u> </u>		
	9	Ŋ	+ IMP CATCH	3	×		
	3 6/19/14		ACE+HEX	C RINSE	×		
	છ		CPMF		X		
	3 6/19/14		PM 52.5	A	X	-	
	FB 6/19/14	ŭ,	12 ACETON	JE RINSE	×		
Relinquished By			Relinquished By			Carrier	
(signature)	White Med	4	(signature)			Laboratory	
(printed)	CRILEY	K1055	(printed)			Contact	
Date/Тіте	6/80/14 16:	;45	Date/Time			Address	
Accepted By	130		Accepted By				
(signature)	Chill the		(signature)			Phone	
(printed)	(RILEY KLOSS	KLOSS	(buuted)			Fax	
Date/Time	6/24/14 14:05	lo.	Date/Time			Date/Time	

Airtech Environmental Services Inc. 804A Courtus Club Dive Benserville, IL 60106 Phone: (630) 860-4740, Fax: (630) 860 4745

AIRTECH ENVIRONMENTAL SERVICES INC. Chain of Custody

oi Z

Project Number	nSth	Location R28	_	Analysis Requested	Page	a	Q To
Client	MPU	Date 6/20/14					
Plant	MAN (TOWOC, W)	Completed By RILEU KL					
Comments:			20e/410C				
ID No.	Run No. Date	Sample Description				Notes	
	FB 6/19/14	DI + 1MP CATCH	×				
	FB 6/19/14	ACE + HEX RINS					
		CAN FILTER					
	FB 6/19/14	PM 52.5 ACE RINS					
	/9	l					
	3 6/11/14	GELMAN FILTER	X				
		:					
Relinquisned by	110/11	Kelinguished By	Carrier	100			
(signature)	W Walleton	(signature)	Labo	Laboratory			ļ
(printed)	- CRILEY K	LoSS (printed)	Contact	act			
Date/Time	6/20/14 16:45	Date/Time	Address	688			
Accepted By		Accepted By					
(signature)	ale to the	(signature)	Phone	91			
(printed)	RIKY KLOSS	(printed)	Fax				
Date/Time	6/24/14 14'ros	Date/Time	Date	Date/Time			

Airtech Environmental Services Inc. 6014 Courtry Club Drive Benserwille, II. 60106 Phone: (630) 860-4740, Fax: (630) 860 4745

Calibration Data

Includes the following:

- Daily Analytical Balance Calibration Log
- Yearly Analytical Balance Test and Calibration Certificate

Scale ID Ohaus AV114C
Units of Measure grams

Full Cal Test Date 4/4/14

Date	Tech Initials	100.0000g	5.0000g	0.1000g	Barometric Pressure (in. Hg)	Relative Humidity (%)	Ambient Temp (°F)	Notes
4-17-14	BHZ	j 000-00/j	5.0000	0.1000	29.44	23	68	
4-18-14	20	100-000/	5.0000	0.1000	29.62	3/	70	
4-23-14	TC	100.0000	5,0002	0.1001	29.45	3 /	70	
4-30-14	SH	100.0066	5, 6001	0-1000	29.03	39	71	
5-2-14	JC	100.0000	5.0000	0.1000	29.06	40	69	
5-6-1-1	すと	100.0000	5.000	0.1000	29,21	36	73	
5-19-14	171	790:0000			24.50	40	71	
5-22-14	4	100.0000	5.0000	0.0999	29.38	42	76	
5-23-14	BIK	7 0100	5.0000	0.1001	29,48	44	73	
5-2414		100,000	5.0000	0 /001	29.44	42		
5-27-14		160.500 (5. 0002		29.23	48	76	
5-28-14	JC	99.5979	4.9999	0.0999	29,24	4/6	78	
5-29-14	70	99.9799	4.7999	0.0999	29.38	39		
5-30-14		100.000	5.0002	0.0999	29.42		7.5	
6-4-14		100,000C		,		40	79	
6-5-14	77	100 0001	4.9999	0.0999	29.14 29.25	48	72	
	JZ			0.0998	29,30	47	73	
2 - 4			5.000/ 5.000 Z		29.30	34	73	
			4.9999	0.1002		43	74	
5-10-14					29.29	41	74	
		00.0000	4.9999	0.1000	29.21	45	73.9	
11/1				0.0999	79.08	48	74	
10119	- 4		5.00)	0.1000	Z9. 34	44	75	
6/18/14		, 7	7	0,1000	29.37	48	73	
6/19/14		-	5.0000	0.0998	29.39	42	73	
1/20/11			4.9999		29.26	43	73	
123/14		00,000 \			29.19	5/8	75	
124 14			4.9599		29.15	48	7.3	
	34 9			0.1000	Z9.3	48	73	
11:05 85/0	-			0.1000	29.33	58	77	
		100000 3	5.000/	0.1000	29.15	13	76	
7/114	00	100.000	.000	3.100	29.02	48	73	

127/1

Scale ID Ohaus AV114C
Units of Measure grams

Full Cal Test Date 4/3/13

														70113	_
Dat	e In	Fech itials	100.00	00g 5.00	00g	0.100	Barom Press Og (in. h	ure	Relativ		Ambie				_
12/23		SK	100.00	01 5.00	62	0,100			40	7			- 1	lotes	_
12/26		<u> </u>	100,00			0,100				-+	67	\dashv		-	_
12/27/			100.000			0-100			40	\dashv	69	-+			_
12/30/		K_	99.999	18 5.00	201				41	-	69	+			_
1/3/1		K	100.00	01 4.99	99	0.1000	29.69	-	38	+	72				_
1111			99.990	17 5.00	00	0.1000			24		70	+			_
1/17/14		_	99. 999		<u> </u>	1.1000	29.10		21	+	71	+			_
1-23-1			100.000			0.1001	29.5	1	20	-	69	+			_
1/29/1			00.00		-+	,0998	20.7	1	19	+	71	+			_
1/30/1				000.00		D-LOW	29,33		19		70.8	+			_
1/31/11			00' 000	00 5.000		3,1000	29.06		18		69.6	+			_
3/3/11	SU				$\overline{}$	20999	19 36		20		69.0	+			_
1 31/14 2/15/		7 1	00.00C	7-4-999		2.0999	29.60		8		67	+-			-
3/6/1	0.1		19.999 71.999			0.100/	29.36		21		69	+			-
2/7/1				7		6889	29.7		21		69	+			٦
			00 000 00.000			1000			Zo		70				٦
2/17/	4 50	-		5.0000	$\overline{}$	2.0889	29.2		18		72	_			٦
2/19/1			00 000/	5.0001		7,1000			21		7/				1
2/20/1			06.00ar		_	072			23		70				1
2/21/1			9.9990	4.9999	$\overline{}$	2.100 2			28	7	2				1
1/23/10			9.4949	4.9998		.0999	28.83		28	le	Я				1
1/26/14	BH2		0.000	5.0000		0999			24		2				1
127/4	BH		1.9999	5.0000	_	1000	29.30	-	_ (o		0				1
128/14	BH2		10001	5.0002		000	29.26		9		25				ı
3/3/1			0.000/	5.000			29.45		8	6	8				
/5/14	BH2		9.9999		_	1000	29.70		19	6	9				ı
16/14	70		_			1001	29.65		11	6	6				
16/14 5/9/14 5/10/14	120			5.0000 5.000e		1000	Z9.25		21	7	0				
Shole	150					1000	25.23		28-	6.	2				
121/14	132			5,0000	_	1000	28.99	1	27	_	0				
122/14			9999	5.0002		0999	79.23		28	7					
128	JZ			8.0000	1.10		24.40	2	32	67					
121/14		100	7777	5.0000		2999	29.03	3	32	6	9				
231/14 1/1/14 1/2/14	JE	In		4.9999	0.0	998	29.29	9	V	6				\dashv	
1214	72			5.0000	0.1	00/	29.03		U	7	/	_		\dashv	
13/14	JZ		.0000	5.0001		00	29.41		36	70		_		-	
1/4/14	JL			5:0001		1000	29.18		25	70					
7/14	BHZ		- 0 -	5.0000		1001	28.77	_	30	63				\neg	
8-14	BHZ	99.9	7/1/2	5.0001	0.0		29.09		4	70					
			-	,,,,,,,,	0.70	~ U	29.02	12:	4	70					

Pass/Full co Identified in FORM:	COm	Cert# Dat 4-12- 4-7-14	Plant CE GO
Form: 5.4.02 L-A-B Accredited Process Control Certificate 3/2/10	Comments:	[[] 지 기 의로 [Tests and/or calibrations shall ste Jeopardize the results. (rain, wind Jeopardize & Address AVIIII) Manufacturer Manufacturer Manufacturer AVIIIII
the L-A-B		98000000000000000000000000000000000000	Is and/or calibrate bardize the result of the result of the control of the contro
opinions of A its intended ACCIFECTION		Client Tolerance (,) %	Address rain Address
unomated Scale		88139882888	ons shall fress
k Corp. based stroclated und Cess Co		88 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Fay Aw T E T Stop wh wind, vibre Model #
on data from serving (as a pontro)		As Found/Left Shift Test As Found/Left Shif	Ave. Ad TEST when en ribration,
masurement plicable) is an			Press Location, in TEST & C. Ans shall stop when environment (rain, wind, vibration, temperatures) I ress Location temperatures Location
s made, processor at a control of the 3/2,			
dure utilized. onfidence leve /10		The state of the s	CRPOR 60101 LIBR Il condition re, and etc on (Plant on (Plant on (Plant on (Plant on (Plant on (Plant on (Plant) on (Plan
of approxima		Side AS Found AS Found AS Found AS 7 SO,0000 100,0001 100,0000 SO,0000 100,0001 100,0000 SO,0004 100,0001 100,000 SO,0004 100,0002 100,0000 SO,0001 100,0002 100,0000	
the half with		As Found 1 AMT 2 20 100.0001 0094 100.0001 0094 100.00550 201 100.0002	THE VENT OF THE PROPERTY OF TH
the uncertain		Sid. Dund AMT 2 AMT	St Test (Grad.
Y associated a		Side AMT 2 100.0000	Standards Us t equipment a Procedur Uncertair Temperat Identified Scale P Corne
vith this callen		8 8 8 8 5 5	I CATE Irds Used: Trainment and weight occurrence occu
ition. It is the			Traceable weight (s) sed: 5.4-0 of measure Yes (V) etrological form est
responsibility.		P & P / SS/Fall 3	IFICATE L-A-B Accurdance Used: Traceable through Nuipment and weight (s) certificates Procedure used: 5.4-02 Process (Uncertainty of measurement (UM) Temperature Yes (A) No [Identified metrological reference: Scale Platform Corner Test A S Parallelogram A S
of the user of		77 77 74 Pemp	A-B Accough No [No
this equipmen		1 200	Page 1 Credited: Certifi NIST to the SI es available or Control // Yes [] J Indicator Condicator See Shift Test Below
ID calibration. It is the responsibility of the user of this equipment to determine if the results	* 5 * 5 * 5 * 5 * 5		Page 1 of 1 Page ERTIFICATE Standards Used: Traceable through NIST to the SI units Test equipment and weight (s) certificates available on request t.) Procedure used: 5.4-02 Process Control Uncertainty of measurement (UM) Temperature Yes [V] Identified metrological reference: NIST Handbook 44 Scale Platform Corner Test A Below B Page 1 of 1 Page L.A-B Accredited: Certificate #L1053-1 To the SI units No [V] Indicator Scale Platform A Below B B B B B B B B B B B B B
if the results		Park the Killing of the training of the traini	of 1 Paginits request vok 444
1 1 Ha <u>ard</u> ,		2 13 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1 E 1	B 2

2014-667-22

DATE REC'D

06/06/14

DATE SAMPLED -----

SAMPLED BY

Client

STANDARD LABORATORIES, INC.

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090

MANITOWOC, WI 54221

SAMPLE IDENTIFICATION -

Boiler B8 Stack Test Performed June 19, 2014

Note: Values Calculated

DATE REPORTED: 07/18/14

8	MOISTURE	% ASH	% VOLATILE	% FIXED CARBON	BTU/LBS	% SULFUR
AS REC'D	1.54	4.99	XXXX	XXXX	12868	2.57
DRY BASIS		5.07	XXXX	XXXX	13069	2.61
M-A-FREE					13767	

ULTIMATE ANALYSIS

	% A	as Received	Dry Basis
Carbon		61.23	62.19
Hydrogen		5.97	6.06
Nitrogen		0.72	0.73
Ash		4.99	5.07
Sulfur		2.57	2.61
Oxygen		22.98	23.34
Moisture		1.54	
Chlorine		0.11	0.12

Respectfully Submitted

du Guden

2014-667-21

DATE REC'D

06/06/14

DATE SAMPLED -----

SAMPLED BY

Client

STANDARD LABORATORIES, INC.

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090 MANITOWOC, WI 54221

SAMPLE IDENTIFICATION ----

Boiler B9 Stack Test Perforned June 17, 2014

Note: Values Calculated

DATE REPORTED: 07/18/14

			% FIXED CARBON		
AS REC'D 1.06	4.21	XXXX	XXXX	13488	3.94
DRY BASIS	4.26	XXXX	XXXX	13633	3.98
M-A-FREE				14240	

ULTIMATE ANALYSIS % As Received Dry Basis Carbon 62.57 63.24 Hydrogen 5.06 5.11 Nitrogen 1.06 1.07 4.21 Ash 4.26 Sulfur 3.94 3.98 22,10 22.34 Oxygen Moisture 1.06 Chlorine 0.03 0.04

Respectfully Submitted

de Suder

2014-667-18

DATE REC'D

06/25/14

DATE SAMPLED -----

SAMPLED BY

CLIENT

STANDARD LABORATORIES, INC.

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090 MANITOWOC, WI 54221

SAMPLE IDENTIFICATION -

B8 Paper 06/19/14

DATE REPORTED: 07/18/14

%	MOISTURE	% ASH	% VOLATILE	% FIXED CARBON	BTU/LBS	% SULFUR
AS REC'D	2.28	7.72	XXXX	XXXX	11465	0.07
DRY BASIS		7.90	XXXX	XXXX	11733	0.07
M-A-FREE					12739	

ULTIMATE ANALYSIS % As Received Dry Basis Carbon 57.87 59.22 Hydrogen 7.81 7.99 Nitrogen 0.10 0.10 Ash 7.72 7.90 Sulfur 0.07 0.07 Oxygen 24.15 24.72 Moisture 2.28 Chlorine 0.21 0.21

Respectfully Submitted

hu Sidu

2014-667-19

DATE REC'D

06/25/14

DATE SAMPLED -----

SAMPLED BY

CLIENT

STANDARD LABORATORIES, INC.

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090 MANITOWOC, WI 54221

SAMPLE IDENTIFICATION —

B9 Paper 06/17/14

DATE REPORTED: 07/18/14

8	MOISTURE	% ASH	% VOLATILE	% FIXED CARBON	BTU/LBS	% SULFUR
AS REC'D	1.94	10.56	XXXX	XXXX	10862	0.05
		10.77	XXXX	XXXX	11077	0.05
M-A-FREE					12414	(

ULTIMATE ANALYSIS

% As Received Dry Basis

Carbon	55.63	56.73
Hydrogen	8.27	8.43
Nitrogen	0.07	0.07
Ash	10.56	10.77
Sulfur	0.05	0.05
Oxygen	23.48	23.95
Moisture	1.94	

Chlorine 0.10 0.11

Respectfully Submitted

- Her rider

2014-667-20

DATE REC'D

06/25/14

DATE SAMPLED -----

SAMPLED BY

CLIENT

STANDARD LABORATORIES, INC.

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090 MANITOWOC, WI 54221

SAMPLE IDENTIFICATION -

B8/B9 Coke and Charcoal Blend 06/19/14

DATE REPORTED: 07/18/14

%	MOISTURE	% ASH	% VOLATILE	% FIXED CARBON	BTU/LBS	% SULFUR
AS REC'D	0.52	0.57	XXXX	XXXX	14683	6.21
DRY BASIS		0.57	XXXX	XXXX	14760	6.24
M-A-FREE					14845	

ULTIMATE ANALYSIS % As Received Dry Basis Carbon 63.56 63.89 Hydrogen 3.70 3.72 Nitrogen 1.35 1.36 Ash 0.57 0.57 Sulfur 6.21 6.24 Oxygen 24.09 24.22 Moisture 0.52 Chlorine 0.01 0.01

Respectfully Submitted

Au (judes)

2014-667-17

DATE REC'D

06/25/14

DATE SAMPLED -----

00/20/22

SAMPLED BY

CLIENT

STANDARD LABORATORIES, INC.

1530 N. Cullen Avenue Evansville, IN 47715

MANITOWOC PUBLIC UTILITIES P.O. BOX 1090 MANITOWOC, WI 54221

SAMPLE IDENTIFICATION -

B8/B9 Coal 06/19/14

DATE REPORTED: 07/18/14

8	MOISTURE	% ASH	% VOLATILE	% FIXED CARBON	BTU/LBS	% SULFUR
AS REC'D	1.82	8.44	XXXX	XXXX	13064	1.23
DRY BASIS		8.60		XXXX	13306	1.25
M-A-FREE					14558	

ULTIMATE ANALYSIS % As Received Dry Basis

70.59	71.90
5.12	5.21
1.58	1.61
8.44	8.60
1.23	1.25
11.22	11.43
1.82	
0.03	0.03
	5.12 1.58 8.44 1.23 11.22 1.82

Respectfully Submitted

Sud Side

Airtech Environmental Services, Inc. Meter Box Full Test Calibration

6/10/2014

Date:

Operator. C.S

Meter Box ID M-30	M-30			Meter Box ∆H@	(0)		1.770	Meter Box Y _d			1.0024	Barometric P	Barometric Pressure (in. Hg.)	(a.)	29.50
Thme		Office Date	ę g					Meter Box Dat	Deta					Results	
θ (min)	צ	Vacuum	Temb	Var	Vыны	Vinal	۸	ΑH	T	T _e	Tavg	Vmstd	ø	٨	∆H@
5.0	0.7936	17.0	9/	5.056	811.60	816.90	5.30	3.20	103	98	94.5	5.014	1.011	1.0085	1.699
5.0	0.7936	17.0	9/	5.056	816.90	822.22	5.32	3,20	104	87	95.5	5.023	1.011	1.0065	1.690
5.0	0.7936	17.0	9/	5.056	822.22	827.54	5.32	3.20	105	87	0.96	5.019	1.011	1.0074	1.691
5.0	0.5783	20.0	11	3.681	842.15	846.09	3.94	1.80	103	93	98.0	3.691	0.736	0.9973	1.741
2.0	0.5783	20.0	11	3.681	846.09	850.01	3.92	1.80	104	93	98.5	3.669	0.736	1.0033	1.760
5.0	0.5783	20.0	2.2	3.681	850.01	853.96	3.95	1.80	104	94	0.66	3.694	0.736	0.9966	1.735
5.0	0.4458	22.0	11	2.838	864.60	867.62	3.02	1.1	102	92	98.5	2.822	0.568	1.0057	1.812
5.0	0.4458	22.0	11	2.838	867.62	870.65	3.03	1.1	102	92	98.5	2.831	0.568	1.0023	1.800
2.0	0.4458	22.0	11	2.838	870.65	873.70	3.05	1.1	102	96	98.5	2.850	0.568	0.9958	1.777
5.0	0.3456	23.0	82	2.198	881.05	883.40	2.35	0.68	103	97	100.0	2.187	0.440	1.0047	1.855
5.0	0.3456	23.0	78	2.198	883.40	885.75	2.35	0.68	103	26	100.0	2.187	0.440	1,0047	1.855
5.0	0.3456	23.0	8/	2.198	885.75	888.12	2.37	0.68	103	26	100.0	2.206	0.440	0.9962	1.824
													Average	1.0024	1.770

/ Vacuum Guage (In. Hg.)	ogen;		hermometer (*F)			Equations
Standard	Vacuum	Standard	Chable		Charton	
	Conso		-	2	3	$V_{cr} = K' * P_b * \theta$
5	5.0	32	32	32	32	$(\Gamma_{max} + 460) ^{\circ} 0.5$
10	10.0	20	50	50	50	
15	15.0	100	100	100	100	$V_{mnd} = \overline{17.64 * V_d * (P_b + (\Delta H/13.6))}$ (T _{we} + 460)
20	20.0	150	150	150	150	
22	25.0	212	212	212	212	$Q = V_{\alpha} / \theta$
		250	250	251	250	
		300	300	301	300	$Y_d = V_{cr} / V_{matd}$
		350	351	351	350	
		400	400	401	401	$\Delta H(\bar{\omega} = .0319 * \Delta H * (T_{evg} + 460) * \theta^2 \Delta T_{evg} + 460) * $
		200	200	501	500	3.
		900	009	601	601	

Airtech Environmental Services Meter Post Calibration

Weight in the mean of the leaf	1.000	Date	6/26/2014
Highest Field Vacuum (inches Hg)	8	Client	Manitowoc
Critical Orifice ID	BB-55	Project No.	4794
Orifice Flow Rate (cfm)	0.584	Meter ID	M-30

	Run 1	Run 2	Run 3
nitial Volume (ft ³)	525.50	528.42	531.36
Final Volume (ft³)	528.42	531.36	534.29
Volume Metered (ft ³)	2.92	2.94	2.93
DGM Inlet Temperature (°F)	81	82	84
DGM Outlet Temperature (°F)	75	76	77
Average DGM Temperature (°F)	78.0	79.0	80.5
Ambient Temperature (°F)	74	74	74
Elapsed Time (min.)	5	5	5
∆H (inches H₂O)	1.10	1.10	1.10
Barometric Pressure (Inches Hg)	29.5	29.5	29.5
Pump Vacuum (inches Hg)	22	22	22
K '	0.4458	0.4458	0.4458
/cr (ft³)	2.846	2.846	2.846
/mstd (ft³)	2.832	2.846	2.829
Post Test Yc	1.0047	0.9998	1.0060
Full Test Yd	1.0024	1.0024	1.0024
% Difference	-0.23	0.26	-0.35
	Average % Differ	ence	-0.11

Airtech Environmental Services, Inc. S-Type Pitot Tube Inspection Form

 Date
 February 26, 2014

 Pitot ID
 AE5-10-6

 Operator
 j burton

	Measured	Allo ed
Outside Tube Diameter - Dt (inches)	0.251	NA
Base To Opening Distance - Pa (inches)	0.356	NA
Base To Opening Distance - Pb (inches)	0.356	NA
Pa/Dt	1.418	1.05-1.50
Pb/Dt	1.418	1.05-1.50
Angle, α1(°)	0.9	10
Angle, α2(°)	0.7	10
Angle, B1(°)	1	5
Angle, B2(°)	4	5
Opening to Opening Distance Pa+Pb (inches)	0.712	NA
Angle, Z (°)	1	NA
z (inches)	0.030	0.125
Angle, W (°)	0.4	NA
Af (bepace)	0.025	0.031

Por Control of the Co	i gai i Leiner (com in note)

Is the Pitot Tube Part of an Assembly
YES
If Yes, Complete the Section Below

i i i i i i i i i i i i i i i i i i i	leasured	* inimum
Distance From Nozzle,X (inches)	1816	0.75
Pitot to Thermocouple Distance, Y(inches)	2.5	≥2
Pitot to Sample Probe Distance Y(inches)	5.75	3

Does the Pitot Tube Meet the Above Requirements
Is the Pitot Tube Free of Damage

Yes

If Yes to Both, a Pitot Tube Coefficient of 0.84 is Assigned If No to Either, then the Pitot Tube Must be Calibrated

Nozzle Calibration Datasheet

Client	M.P.U.	Job No.	4794
Plant	MANDOWOL, WI		,
	M-5	M-201A/202	M-5/26A
	Nozzle 1	Nozzle 2	Nozzle 3
Date	106-16-14	06-17-14	03-18-14
Nozzle ID	3.D.	.175 J.D.	.030
Operator	J.D.	3.0.	0.7
Test Location	B09	1309	B09
Run Number (s)	1,2	B09	BO9
Diameter 1	.231	0175	. 23/
Diameter 2	1.229	.176	. 229
Diameter 3	.∂30	.174	,230
Average	. 230	.174	.330 .330
		-M-26A,	
	M-5/26A	M-2011/200	M-201A/20:
	Nozzle 4	Nozzle 5	Nozzle 6
Date	65-06-18-14	06-18-14	06-19-14
Nozzle ID	-260	* 3あ ひ	. 200
Operator	て, D・	3.0	7.0.
Test Location	Bos	B08	BOS
Run Number (s)	1,X	9	1,2,3
Diameter 1	1260	1269	· 100
Diameter 2	. 259	-270 -270	-201
Diameter 3	.061	-270	, 199
Average	1260	.270	(200)

Notes:

Measurements must be made to the nearest 0.001 inches.

Three different diameters should be measured.

The difference between the high and low measurement must be less than 0.004 inches.

B09 - Signed Jy Now Vi

06-18-64

Boiler Stack Test	Operatin	g Data				
Date:June 19, 2014	Boiler: B-28	Pecorded by: T	om Reed and A	dam Recker		
	Run: No. 1		tech Environme		Inc	
Methods: USEPA Method						
Parameter	Start	60 min.	120 min.	Stop	AVG.	Net
Time	8:15	9:13	10:15	11:19		3:04
Coal Scale B (lbs.)	9074957			9109419		34,462
Paper Scale A (lbs.)	389336			423846		34,510
Pounds of Fuel Used						68,972
Pounds of fuel per hour			1.000		52	22,491
Limestone Scale (lbs)	211379	avg. lbs/hr =	3,398	221798	T	10,419
Steam integrator(Klbs)	855.30			1468.01		612.71
Limestone (Klbs/hr)	3.8	3.2	3.1	3.2	3.3	
Steam Flow (Klbs/hr)	202.3	203.4	200.1	193.3		199.8
Percent of MCR	101%	102%	100%	97%		100%
Feeder B (Klbs/hour)	10.66	10.69	10.70	10.66	10.68	
Feeder A (Klbs/hour)	10.80	10.72	10.63	10.74	10.72	
Percent Bio (%)	49.7%	49.9%	50.2%	49.8%		50.0%
Feed Water (Klbs/hr)	189.1	190.5	189.9	182.4	188.0	
Differential freeboard	6.62	7.05	6.62	7.23	6.88	
Bed Temperature	1585	1595	1590	1587	1589	
Bed Level	17.64	17.59	15.35	16.55	16.78	
Total Air Flow (Klb/hr)	234.8	235.4	234.2	234.7	234.8	
PA Air Flow (Klb/hr)	132	138	143	141	139	
Overfire Air (Klbs/hr)	68.8	66.1	62.8	62.2	65.0	
Bag house dp (inches)	4.61	4.96	4.80	4.92	4.82	
Opacity (%)	3.86	3.84	4.27	4.05	4.01	-
Oxygen (%)	3.0	3.0	2.9	2.9	3.0	
Net MW	19.38	19.41	19.28	19.26	19.33	
Gross MWh Generation	70757.4			70825.2		67.80
Avg. Production MWh/hr						22.11
MPU Fireman:	Mike Powalisa	Z				
NOTES: 1. Steam integrator v	alue from Trend	#5,(TST). B8 grapl	nic is 8.			
2. Bunker B is 82% coke/chare	coal and 18% coa	l blend. Bunker A	is paper pellets.			
3. Turbine #5 online. B10 is O	FF and B9 is pro	viding steam sales	with controlled ext	raction.		

Boiler Stack Test	Operatin	g Data				
Date:June 19, 2014	Boiler: B-28	Recorded by: T	om Reed and A	dam Recker		
Test: PM (2.5) & Total	Run: No. 2		tech Environme		Inc.	
Methods: USEPA Method					1110.	
				- i	LATIC	D T 4
Parameter	Start	60 min.	120 min.	Stop	AVG.	Net
Time	11:59	12:58	14:08	15:13		3:14
Coal Scale B (lbs.)				9153285		36,284
Paper Scale A (lbs.)				11467802	_	36,358
Pounds of Fuel Used						72,642
Pounds of fuel per hour	L	0				22,467
Limestone Scale (lbs)	3224017	avg. lbs/hr =	3,474	3235248		11,231
Steam integrator(Klbs)	1591.10			2240.48		649.38
Limestone (Klbs/hr)	3.7	3.5	3.7	4.0	3.7	
Steam Flow (Klbs/hr)	198.3	197.3	200.6	207.7		200.8
Percent of MCR	99%	99%	100%	104%		100%
Feeder B (Klbs/hour)	10.69	10.69	10.68	10.70	10.69	
Feeder A (Klbs/hour)	10.63	10.69	10.72	10.66	10.68	
Percent Bio (%)	50.1%	50.0%	49.9%	50.1%		50.1%
Feed Water (Klbs/hr)	187.0	186.0	191.0	194.5	189.6	
Differential freeboard	7.32	6.96	7.73	7.68	7.42	
Bed Temperature	1589	1590	1598	1600	1594	
Bed Level	16.91	17.10	14.79	16.51	16.33	
Total Air Flow (Klb/hr)	231.7	227.8	229.1	237.8	231.6	
PA Air Flow (Klb/hr)	130	134	128	132	131	
Overfire Air (Klbs/hr)	66.3	67.0	71.7	68.9	68.5	
Bag house dp (inches)	5.04	4.51	4.58	4.79	4.73	
Opacity (%)	4.02	4.19	4.39	4.18	4.20	
Oxygen (%)	3.0	2.9	3.4	2.9	3.1	- -
Net MW	19.10	19.07	20.35	20.04	19.64	
Gross MWh Generation				70911.6	1	71.70
Avg. Production MWh/hr		han to die die en			J	22.18
MPU Fireman:		<u> </u>			=======================================	
NOTES: 1. Steam integrator			phic is 8.			
2. Turbine #5 online. B10 is O				raction.		

Boiler Stack Test	Operatin	g Data				
Date:June 19, 2014	Boiler: B-28	Recorded by: T	om Reed and A	dam Recker		
Test: PM (2.5) & Total	Run: No. 3		tech Environme		Inc	
Methods: USEPA Method					1110.	
Parameter	Start	60 min.	120 min.	Stop	AVG.	Net
Time	15:34	16:32	17:29	18:35		3:01
Coal Scale B (lbs.)	9157376			9191423		34,047
Paper Scale A (lbs.)	11471884			11505972		34,088
Pounds of Fuel Used		24, 110, 111				68,135
Pounds of fuel per hour						22,586
Limestone Scale (lbs)	3236607	avg. lbs/hr =	3,694	3247750		11,143
Steam integrator(Klbs)	2310.78			2928.50		617.72
Limestone (Klbs/hr)	3.3	3.8	4.3	3.0	3.6	
Steam Flow (Klbs/hr)	201.9	198.9	198.8	203.2		204.8
Percent of MCR	101%	99%	99%	102%		102%
Feeder B (Klbs/hour)	10.67	10.66	10.67	10.71	10.68	
Feeder A (Klbs/hour)	10.76	10.75	10.70	10.72	10.73	
Percent Bio (%)	49.8%	49.8%	49.9%	50.0%		50.0%
Feed Water (Klbs/hr)	189.5	190.1	188.2	191.7	189.9	
Differential freeboard	6.90	7.18	7.19	7.27	7.14	
Bed Temperature	1599	1602	16.08	1605	1206	
Bed Level	15.77	17.23	16.50	15.35	16.21	
Total Air Flow (Klb/hr)	240.6	234.3	242.8	241.6	239.8	
PA Air Flow (Klb/hr)	142	136	142	143	141	
Overfire Air (Klbs/hr)	66.6	75.6	70.2	70.4	70.7	
Bag house dp (inches)	4.91	4.80	5.08	5.18	4.99	
Opacity (%)	4.13	3.43	3.25	2.79	3.40	
Oxygen (%)	2.7	3.1	3.0	2.7	2.9	
Net MW	19.89	20.11	20.27	20.15	20.11	
Gross MWh Generation	70919.7			70988.2		68.50
Avg. Production MWh/hr						22.71
MPU Fireman:	Dan Biely	· · · · · · · · · · · · · · · · · · ·				
NOTES: 1. Steam integrator	value from Trend	#5,(TST). B8 grap	phic is 8.		· - ·	
2. Turbine #5 online. B10 is O				raction.		

Boiler Stack Test Opera	perating Data	ta	Test: No. 1	Run: No. 1, PM2.	PM2.5 & Total PM	
Date: June 17, 2014 Boiler: B09	Recorded by: Tom Reed & Adam Becker	eed & Adam Becker	Testing by: AIRTECI	Testing by: AIRTECH Environmental Services	ices	
Parameter	Start	60-minutes	120-minutes	Stop	Avg.	Net
Time	10:59	11:59	13:02	14:11		3:12
Boiler Master (psig)	1,457.3	1,457.8	1,459.6	1,456.3	1,457.8	
Steam Flow (turbine) (Klbs/hr)	451	457	467	465	460.00	
Feed Water (Klbs/hr)	434	442	448	451	443.75	
Differential Freeboard	7.0	7.8	7.7	8.0	7.63	
Bed Depth	23.5	25.5	26	27.6	25.65	
Opacity (%)	2.31	2.23	2.89	2.7	2.53	
Furnace Pressure (in.)	-1.47	-1.41	-1.21	-1.02	-1.28	
Bed Temperature (F)	1,623	1,620	1,624	1,621	1,622	
PA Flow (Klbs/hr)	367	368	372	374	370	
SA Flow (Klbs/hr)	177.2	178.2	190.9	187.4	183.4	
Oxygen (%)	2.98	2.97	2.92	3.00	2.97	
MW output (MWh-gross)	58.28	58.53	59.57	58.52	58.73	
MW output (MWh-net)	53.87	54.05	55.01	53.99	54.23	
MW Totals (MWh)	3462.8	avg. MW/hr	58.9	3651.3		188.5
Bag house (Dp "inches")	2.9	3.7	4.3	3.4	3.58	
Exit gas Temperature (F)	328	330	332	333	330.75	
Limestone Feed rate (Klbs/hr)	11.2	14.1	14.2	15.7	13.80	
Limestone Scale	711939	avg. lbs/hr	13,704	755793		43,854
Fuel Master (Klbs/hr)	46.2	46.5	46.4	46.6	46.43	
Coal Scale (A)	964090			1014351		50,261
Coal Scale (B.)	803780			853517		49,737
Coal Scale (C.)	162989			212357		49,368
Total Pounds Fuel			Fuel Rate	46,677		149,366
BARI (Kibs/hr)	0	0	0	0		
Soot Blow start/stop						i
Ammonia Flow	1	i	;	1	ı	
NOTES: Fireman was Dan Biely, Use graphic #102 for data, the diesel and B10 were off.	se graphic #102 for d	ata, the diesel and B10		60.8 % coke/charcoal blend plus 25% paper and 14.2%	25% paper and	14.2%
1000	:	:				

Boiler Stack Test Opera	perating Data	g	Test: No. 1	Run: No. 2, PM2.	PM2.5 & Total PM	
Date: June 17, 2014 Boiler: B09	Recorded by: Tom Reed & Adam Becker	eed & Adam Becker	Testing by: AIRTECH Environmental Services	Environmental Serv	rices	
Parameter	Start	60-minutes	120-minutes	Stop	Avg. N	Net
Time	14:51	15:52	16:54	18:01		3:10
Boiler Master (psig)	1,454.3	1,456.8	1,456.4	1,453.4	1,455.2	
Steam Flow (turbine) (Klbs/hr)	456	456	453	455	455.00	
Feed Water (Klbs/hr)	435	437	432	437	435.25	
Differential Freeboard	8.0	8.0	8.3	8.3	8.13	
Bed Depth	27	27	29	27.75	27.69	
Opacity (%)	2.86	3.03	2.8	3.33	3.01	
Furnace Pressure (in.)	-1.44	-1.39	-1.25	-1.45	-1.38	
Bed Temperature (F)	1,613	1,612	1,608	1,604	1,609	
PA Flow (Klbs/hr)	379	374	375	370	375	
SA Flow (Klbs/hr)	174.2	177	171.9	160.7	171.0	
Oxygen (%)	3.23	3.08	3.14	3.14	3.15	
MW output (MWh-gross)	57.77	58.76	58.33	57.47	58.08	
MW output (MWh-net)	53.16	54.38	53.89	52.9	53.58	
MW Totals (MWh)	3693.5	avg. MW/hr=	57.8	3876.4	18	182.9
Bag house (Dp "inches")	3.9	4.3	4.7	3	3.98	
Exit gas Temperature (F)	335	323	323	324	326.25	
Limestone Feed rate (Klbs/hr)	13.1	13.7	13.2	12.7	13.18	
Limestone Scale	765854	avg. lbs/hr=	13,280	804208	42,0	42,054
Fuel Master (Klbs/hr)	47.1	46.7	46.9	46.8	46.88	
Coal Scale (A)	25324			75399	50,0	50,075
Coal Scale (B.)	864385			913962	49,577	,577
Coal Scale (C.)	223159			272393	49,2	49,234
Total Pounds Fuel			Fuel Rate =	47:017	148,886	988
BARI (Klbs/hr)	0	0	0	0		
Soot Blow start/stop	14:15			15:34		1
Ammonia Flow	:	1		:	1	
NOTES: Fireman was Derrick Buchner, Use graphic #102 for data, the diesel and B10 were off. B9 providing extraction. Use trend 941 for soot	mer, Use graphic #10	2 for data, the diesel ar	ld B10 were off. B9 pr	oviding extraction. U	Use trend 941 for soc	ot
Diower screen.	:					

	k Test O	perating Dat	я	Test: No. 1	Run: No. 3, PM2.	PM2.5 & Total PM	
Start 60-minutes 120-minutes Stop Avg. 18:44 19:41 20:41 21:52 1,455.8 1,455.8 1,455.8 1,455.8 1,455.8 1,455.8 1,455.1 40.41 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.1 452.2 25.4 452.2 25.4 452.2 25.4 25.4 452.2 25.4 25.4 25.4 25.4 25.7 25.4 25.7 25.4 25.7 25.4 25.7 25.2 25.4 25.2 25.2 25.2 25.2 25.2 25	Date: June 17, 2014 Boiler: B09	Recorded by: Tom Re	ed & Adam Becker	Testing by: AIRTECH	I Environmental Serv	rices	
18:44 19:41 20:41 21:52 4.455.1 455.3 1,456.8 1,455.1 455.1 455.1 455.3 455.3 1,456.8 1,455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.1 455.2 440 435.25 8.24 8.24 8.24 8.24 8.24 455.2 8.24 455.2 8.24 8	Parameter	Start	60-minutes	120-minutes	Stop	Avg.	Net
1,455.3 1,456.3 1,456.8 1,455.1 1,455.1 452 452 457 451.25 436 430 435 440 452.25 436 430 435 440 455.25 8.0 8.2 8.3 8.5 8.24 8.0 8.2 8.3 8.5 8.24 8.0 8.2 8.3 8.24 8.24 8.0 8.2 8.3 8.24 8.24 2.8 2.8 3.3 8.24 8.24 2.8 2.8 3.3 3.00 1.159 1.595 1.597 1.597 1,590 1,596 1,596 1,595 1,596 1,597 1,145 1,599 1,596 1,595 1,595 1,597 1,145 1,596 1,596 1,595 1,596 1,597 1,145 3,10 3.11 3.11 3.19 3.10 3.28 3.28 3.28 3.28 3.	Time	18:44	19:41	20:41	21:52		3:08
452 444 452 457 451.25 436 430 435 440 435.25 8.0 8.2 8.3 8.5 8.24 8.0 8.2 8.3 8.5 8.24 8.0 8.2 8.3 8.5 8.24 2.89 2.8 3.19 3.13 3.00 1.596 1,596 1,596 1,597 1.45 1.599 1,596 1,596 1,597 1.596 1,597 1.599 1,596 1,595 1,596 1,597 1.44 -1.45 1.599 1,596 1,595 1,596 1,596 1,597 1,596 1,597 382 373 385 388 382 16.3 1.45 1.45 1.45 1.45 1.45 1.596 1,597 25.88 25.88 25.88 25.88 25.88 25.78 25.88 25.88 25.88 25.88 25.88 25.88 25.88 25.88	Boiler Master (psig)	1,455.3	1,452.8	1,455.3	1,456.8	1,455.1	
436 430 435 440 452.55 8.0 8.2 8.3 8.5 8.24 8.0 8.2 8.3 8.5 8.24 8.0 2.8 3.19 25.75 26.94 2.89 2.8 3.19 3.13 3.00 1-1.12 -1.61 -1.63 -1.44 -1.45 1.599 1,596 1,596 1,596 1,597 3.82 3.73 3.85 3.88 382 3.82 3.73 3.85 3.88 382 1.596 1,596 1,596 1,597 16.3 3.82 3.73 3.85 3.88 382 3.16 3.11 3.19 3.12 3.12 57.65 57.2 57.3 58.76 57.88 43918.2 3.2 44.4 3.3 47.95 47.9 47.9 47.3 47.95 47.95 47.9 47.9 47.7 48.3	Steam Flow (turbine) (Klbs/hr)	452	444	452	457	451.25	
8.0 8.2 8.3 8.5 8.24 27 26 29 25.75 26.94 2.89 2.8 3.19 3.13 3.00 -1.12 -1.61 -1.63 -1.44 -1.45 -1.12 -1.61 -1.63 -1.44 -1.45 -1.12 -1.61 -1.63 -1.44 -1.45 -1.12 -1.61 -1.63 3.19 3.19 3.00 -1.159 1,596 1,596 1,596 1,597 3.14 -1.44 -1.45 -1.15 -1.61 -1.63 3.88 3.82 382 382 382 37.3 3.11 3.19 3.12 57.88 57.89 57.89 57.89 57.89 57.89 57.80 44.99 3.3 3.50 44.99 47.90 47.9 47.95 47.95 47.95 47.95 47.95 47.95 47.95 47.95 47.95 47.95 47.95 47.96 47.96 47.96 <td>Feed Water (Klbs/hr)</td> <td>436</td> <td>430</td> <td>435</td> <td>440</td> <td>435.25</td> <td></td>	Feed Water (Klbs/hr)	436	430	435	440	435.25	
27 26 29 25.75 26.94 2.89 2.8 3.19 3.13 3.00 -1.12 -1.61 -1.63 -1.44 -1.45 -1.12 -1.61 -1.63 -1.44 -1.45 -1.599 1,596 1,595 1,596 1,597 382 373 385 388 382 382 373 385 388 382 157.8 154.8 165.3 167.2 161.3 3.01 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.50 43918.2 3.28 44.4 3.3 3.70 32.7 32.7 32.9 327.50 12.83 81682.5 avg. lbshr= 12.910 857275 4 47.9 47.9 47.7 48.3 47.95 86904 975470 5	Differential Freeboard	8.0	8.2	8.3	8.5	8.24	
2.89 2.8 3.19 3.13 3.00 -1.12 -1.61 -1.63 -1.44 -1.45 1,599 1,596 1,595 1,596 1,597 382 373 385 388 382 382 373 385 388 382 157.8 154.8 165.3 167.2 161.3 301 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.50 54.33 53.50 43918.2 3.8 4.4 3.3 37.0 3.3 3.8 4.4 3.3 37.0 3.2 3.2 3.2 3.2 47.9 47.9 47.9 47.7 48.3 47.95 86904 47.9 47.7 48.3 47.95 86904 47.9 47.7 48.3 47.95 883726 47.9 48.3 44.4	Bed Depth	27	26	29	25.75	26.94	
1.12 -1.61 -1.63 -1.44 -1.45 1,599 1,596 1,595 1,596 1,597 382 373 385 388 382 382 1,596 1,597 1,596 1,597 382 15.3 388 382 382 157.8 154.8 165.3 167.2 161.3 3.01 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.50 43918.2 3.8 4.4 3.3 3.70 3.3 3.2 3.2 3.2 3.2 3.3 3.2 3.2 3.2 4.0 3.3 3.2 3.2 3.2 4.0 3.3 3.2 3.2 3.2 4.0 3.3 3.2 3.2 4.7 4.2 47.9 47.9 47.7 48.3 4.4	Opacity (%)	2.89	2.8	3.19	3.13	3.00	
1,599 1,596 1,596 1,597 382 388 382 382 373 385 388 382 157.8 154.8 165.3 167.2 161.3 157.8 154.8 165.3 167.2 161.3 3.01 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.50 43918.2 3.8 4.4 3.3 3.70 3.3 3.8 4.4 3.3 3.70 3.27 327 329 327.50 47.9 47.9 47.7 48.3 47.95 86904 47.9 47.7 48.3 47.95 47.95 86904 47.9 47.7 48.3 47.95 47.95 86904 47.9 47.7 48.3 47.95 47.95 925344 6 0 0 0	Furnace Pressure (in.)	-1.12	-1.61	-1.63	-1.44	-1.45	
382 385 388 382 157.8 154.8 165.3 167.2 161.3 157.8 154.8 165.3 167.2 161.3 3.01 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.50 43918.2 3.8 4.4 3.3 3.70 3.3 3.8 4.4 3.3 3.70 3.3 3.8 4.4 3.3 3.70 3.27 32.7 32.9 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs.hr 47.7 48.3 47.95 47.9 47.7 48.3 47.95 5 86904 47.7 48.3 47.95 4 283726 6 0 0 0 0 0 0 0 0 0 0 <td>Bed Temperature (F)</td> <td>1,599</td> <td>1,596</td> <td>1,595</td> <td>1,596</td> <td>1,597</td> <td></td>	Bed Temperature (F)	1,599	1,596	1,595	1,596	1,597	
157.8 154.8 165.3 167.2 161.3 3.01 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.50 43918.2 avg. MW/hr 57.8 44099.2 35.50 3.3 3.8 4.4 3.3 3.70 3.27 327 329 327.50 12.2 13 13.8 12.3 12.83 8168.5 avg. lbs/hr 47.7 48.3 47.95 5 86904 47.9 47.7 48.3 47.95 5 86904 47.9 47.7 48.3 47.95 5 283726 0 0 0 0 0 0	PA Flow (Klbs/hr)	382	373	385	388	382	
3.01 3.16 3.11 3.19 3.12 57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.80 43918.2 avg. MW/fin 57.8 44099.2 3.70 3.3 3.8 4.4 3.3 3.70 3.2 327 329 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs/hr 47.7 48.3 47.95 86904 47.9 47.7 48.3 47.95 86904 47.9 47.7 48.3 47.95 86904 60 0 0 0 925344 60 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	SA Flow (Kibs/hr)	157.8	154.8	165.3	167.2	161.3	
57.65 57.2 57.9 58.76 57.88 53.3 52.82 53.55 54.33 53.50 43918.2 avg. NWAhr 57.8 44099.2 35.50 3.3 3.8 4.4 3.3 3.70 3.2 327 329 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs/hr 47.7 48.3 47.95 47.9 86904 47.9 47.7 48.3 47.95 5 925344 90 0 0 0 156 0 0 0 0 0 156 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Oxygen (%)	3.01	3.16	3.11	3.19	3.12	
53.3 52.82 53.55 54.33 53.50 43918.2 avg. MW/hr 57.8 44099.2 3.70 3.3 3.8 4.4 3.3 3.70 3.27 327 329 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs/hr 47.7 48.3 47.95 47.9 47.9 47.9 47.7 48.3 47.95 5 86904 47.7 48.3 47.95 5 86904 7333554 47.95 5 863726 975470 5 283726 0 0 0 0 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	MW output (MWh-gross)	57.65	57.2	57.9	58.76	57.88	
43918.2 avg. MW/hr = 57.8 44099.2 3.3 3.8 4.4 3.3 3.70 3.27 327 329 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs/hr = 12.910 857275 4 47.9 47.9 47.7 48.3 47.95 4 86904 47.7 48.3 47.95 5 283726 Fuel Rate = 48.070 5 283726 0 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	MW output (MWh-net)	53.3	52.82	53.55	54.33	53.50	
3.3 3.8 4.4 3.3 3.70 327 327 329 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs/hr 12.910 857275 4 47.9 47.9 47.7 48.3 47.95 86904 137570 5 925344 Puel Rate 48.070 5 283726 0 0 0 156 0 0 0 0 156 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.		43918.2	avg. MW/hr=		44099.2		181.0
327 327 329 327.50 12.2 13 13.8 12.3 12.83 816825 avg. lbs/hr = 12,910 857275 47.95 47.9 47.7 48.3 47.95 86904 137570 75470 925344 975470 13 0 0 0 0 0 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Bag house (Dp "inches")	3.3	3.8		3.3	3.70	
12.2 13 13.8 12.3 12.83 816825 avg. Ibs/fhr 47.7 48.3 47.95 47.9 47.7 48.3 47.95 86904 137570 77570 77570 925344 975470 77570 77570 10 0 0 0 0 10 0 0 0 0 11 12 12 13 12 13 14 15 13 13 14 15 14 15 15 16 15 15 16 17 16 0 0 0 0 0 17 15 15 17 18 10 10 10 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>Exit gas Temperature (F)</td><td>327</td><td>327</td><td>327</td><td>329</td><td>327.50</td><td></td></t<>	Exit gas Temperature (F)	327	327	327	329	327.50	
816825 avg. lbs/hr 12,910 857275 47.9 47.7 48.3 47.95 86904 137570 137570 925344 975470 17.95 283726 18.0770 11 0 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Limestone Feed rate (Klbs/hr)	12.2	13	13.8	12.3	12.83	
47.9 47.7 48.3 47.95 86904 137570 47.95 925344 975470 137570 283726 333554 1. 0 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Limestone Scale	816825	avg. lbs/hr =	12,910	857275		40,450
86904 925344 283726 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fuel Master (Klbs/hr)	47.9	47.9	47.7	48.3	47.95	
283726 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Coal Scale (A)	86904			137570		50,666
283726	Coal Scale (B.)	925344			975470		50,126
0 0 0 0 0 se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Coal Scale (C.)	283726			333554		49,828
0 0 0 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	Total Pounds Fuel			Fuel Rate =	48,070		50,620
se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	BARI (Klbs/hr)	0	0	0	0		
se graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Soot Blow start/stop						
NOTES: Fireman was Derrick Buchner, Use graphic #102 for data, the diesel and B10 were off. B9 providing extraction.	Ammonia Flow	1		ļ	 	1	
	NOTES: Fireman was Derrick Buch	mer, Use graphic #102	for data, the diesel an	d B10 were off. B9 pro	viding extraction.		

End of Report